KLF6-SV1 overexpression accelerates human and mouse prostate cancer progression and metastasis

Goutham Narla, Analisa DiFeo, Yolanda Fernandez, Saravana Dhanasekaran, Fei Huang, Jaya Sangodkar, Eldad Hod, Devin Leake, Scott L. Friedman, Simon J. Hall, Arul M. Chinnaiyan, William L. Gerald, Mark A. Rubin, John A. Martignetti

Research output: Contribution to journalArticlepeer-review

102 Scopus citations

Abstract

Metastatic prostate cancer (PCa) is one of the leading causes of death from cancer in men. The molecular mechanisms underlying the transition from localized tumor to hormone-refractory metastatic PCa remain largely unknown, and their identification is key for predicting prognosis and targeted therapy. Here we demonstrated that increased expression of a splice variant of the Kruppel-like factor 6 (KLF6) tumor suppressor gene, known as KLF6-SV1, in tumors from men after prostatectomy predicted markedly poorer survival and disease recurrence profiles. Analysis of tumor samples revealed that KLF6-SV1 levels were specifically upregulated in hormone-refractory metastatic PCa. In 2 complementary mouse models of metastatic PCa, KLF6-SV1-overexpressing PCa cells were shown by in vivo and ex vivo bioluminescent imaging to metastasize more rapidly and to disseminate to lymph nodes, bone, and brain more often. Interestingly, while KLF6-SV1 overexpression increased metastasis, it did not affect localized tumor growth. KLF6-SV1 inhibition using RNAi induced spontaneous apoptosis in cultured PCa cell lines and suppressed tumor growth in mice. Together, these findings demonstrate that KLF6-SV1 expression levels in PCa tumors at the time of diagnosis can predict the metastatic behavior of the tumor; thus, KLF-SV1 may represent a novel therapeutic target.

Original languageEnglish
Pages (from-to)2711-2721
Number of pages11
JournalJournal of Clinical Investigation
Volume118
Issue number8
DOIs
StatePublished - 1 Aug 2008

Fingerprint

Dive into the research topics of 'KLF6-SV1 overexpression accelerates human and mouse prostate cancer progression and metastasis'. Together they form a unique fingerprint.

Cite this