Abstract
The aim of this mini review is to provide an overview regarding the role of inwardly rectifying potassium channel 4.1 (Kir4.1)/Kir5.1 in regulating renal K+ excretion. Deletion of Kir4.1 in the kidney inhibited thiazide-sensitive NaCl cotransporter (NCC) activity in the distal convoluted tubule (DCT) and slightly suppressed Na-K-2Cl cotransporter (NKCC2) function in the thick ascending limb (TAL). Moreover, increased dietary K+ intake inhibited, whereas decreased dietary K+ intake stimulated, the basolateral potassium channel (a Kir4.1/Kir5.1 heterote-tramer) in the DCT. The alteration of basolateral potassium conductance is essential for the effect of dietary K+ intake on NCC because deletion of Kir4.1 in the DCT abolished the effect of dietary K+ intake on NCC. Since potassium intake-mediated regulation of NCC plays a key role in regulating renal K+ excretion and potassium homeostasis, the deletion of Kir4.1 caused severe hypokalemia and metabolic alkalosis under control conditions and even during increased dietary K+ intake. Finally, recent studies have suggested that the angiotensin II type 2 receptor (AT2R) and bradykinin-B2 receptor (BK2R) are involved in mediating the effect of high dietary K+ intake on Kir4.1/Kir5.1 in the DCT.
Original language | English |
---|---|
Pages (from-to) | F582-F586 |
Journal | American Journal of Physiology - Renal Physiology |
Volume | 316 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2019 |
Externally published | Yes |
Keywords
- Distal convoluted tubule
- K excretion
- NCC
- NKCC2