TY - JOUR
T1 - Key-genes regulating the liposecretion process of mature adipocytes
AU - Maurizi, Giulia
AU - Petäistö, Tiina
AU - Maurizi, Angela
AU - Della Guardia, Lucio
N1 - Publisher Copyright:
© 2017 Wiley Periodicals, Inc.
PY - 2018/5
Y1 - 2018/5
N2 - White mature adipocytes (MAs) are plastic cells able to reversibly transdifferentiate toward fibroblast-like cells maintaining stem cell gene signatures. The main morphologic aspect of this transdifferentiation process, called liposecretion, is the secretion of large lipid droplets and the development of organelles necessary for exocrine secretion. There is a considerable interest in the adipocyte plastic properties involving liposecretion process, but the molecular details are incompletely explored. This review analyzes the gene expression of MAs isolated from human subcutaneous fat tissue with respect to bone marrow (BM)-derived mesenchymal stem cells (MSC) focusing on gene regulatory pathways involved into cellular morphology changes, cellular proliferation and transports of molecules through the membrane, suggesting potential ways to guide liposecretion. In particular, Wnt, MAPK/ERK, and AKT pathways were accurately described, studying up- and down-stream molecules involved. Moreover, adipogenic extra- and intra-cellular interactions were analyzed studying the role of CDH2, CDH11, ITGA5, E-Syt1, PAI-1, IGF1, and INHBB genes. Additionally, PLIN1 and PLIN2 could be key-genes of liposecretion process regulating molecules transport through the membrane. All together data demonstrated that liposecretion is regulated through a complex molecular networks that are able to respond to microenvironment signals, cytokines, and growth factors. Autocrine as well as external signaling molecules might activate liposecretion affecting adipocytes physiology.
AB - White mature adipocytes (MAs) are plastic cells able to reversibly transdifferentiate toward fibroblast-like cells maintaining stem cell gene signatures. The main morphologic aspect of this transdifferentiation process, called liposecretion, is the secretion of large lipid droplets and the development of organelles necessary for exocrine secretion. There is a considerable interest in the adipocyte plastic properties involving liposecretion process, but the molecular details are incompletely explored. This review analyzes the gene expression of MAs isolated from human subcutaneous fat tissue with respect to bone marrow (BM)-derived mesenchymal stem cells (MSC) focusing on gene regulatory pathways involved into cellular morphology changes, cellular proliferation and transports of molecules through the membrane, suggesting potential ways to guide liposecretion. In particular, Wnt, MAPK/ERK, and AKT pathways were accurately described, studying up- and down-stream molecules involved. Moreover, adipogenic extra- and intra-cellular interactions were analyzed studying the role of CDH2, CDH11, ITGA5, E-Syt1, PAI-1, IGF1, and INHBB genes. Additionally, PLIN1 and PLIN2 could be key-genes of liposecretion process regulating molecules transport through the membrane. All together data demonstrated that liposecretion is regulated through a complex molecular networks that are able to respond to microenvironment signals, cytokines, and growth factors. Autocrine as well as external signaling molecules might activate liposecretion affecting adipocytes physiology.
KW - adipocytes
KW - liposecretion
KW - mesenchymal stem cells
KW - microarray analysis
KW - molecular pathways
UR - http://www.scopus.com/inward/record.url?scp=85033601907&partnerID=8YFLogxK
U2 - 10.1002/jcp.26188
DO - 10.1002/jcp.26188
M3 - Review article
C2 - 28926092
AN - SCOPUS:85033601907
SN - 0021-9541
VL - 233
SP - 3784
EP - 3793
JO - Journal of Cellular Physiology
JF - Journal of Cellular Physiology
IS - 5
ER -