TY - JOUR
T1 - Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis
AU - Romero, Rodrigo
AU - Sayin, Volkan I.
AU - Davidson, Shawn M.
AU - Bauer, Matthew R.
AU - Singh, Simranjit X.
AU - Leboeuf, Sarah E.
AU - Karakousi, Triantafyllia R.
AU - Ellis, Donald C.
AU - Bhutkar, Arjun
AU - Sánchez-Rivera, Francisco J.
AU - Subbaraj, Lakshmipriya
AU - Martinez, Britney
AU - Bronson, Roderick T.
AU - Prigge, Justin R.
AU - Schmidt, Edward E.
AU - Thomas, Craig J.
AU - Goparaju, Chandra
AU - Davies, Angela
AU - Dolgalev, Igor
AU - Heguy, Adriana
AU - Allaj, Viola
AU - Poirier, John T.
AU - Moreira, Andre L.
AU - Rudin, Charles M.
AU - Pass, Harvey I.
AU - Vander Heiden, Matthew G.
AU - Jacks, Tyler
AU - Papagiannakopoulos, Thales
N1 - Funding Information:
We thank D. McFadden, R. Possemato, S. Sayin, and T. González-Robles for critical reading of the manuscript; T. Tammela, L. Sullivan, G. DeNicola, and I. Harris for scientific discussions and feedback; S. Levine and T. Mason for massively parallel sequencing expertise; M. Griffin, M. Jennings, and G. Paradis for fluorescence-activated cell sorting (FACS) support; K. Cormier and the Hope Babette Tang (1983) Histology Facility for histology support; I. Baptista, A. Deconinck, J. Teixeira, and K. Yee for administrative support; and the Swanson Biotechnology Center for excellent core facilities. This work was supported in part by the Laura and Isaac Perlmutter Cancer Support Grant, National Institutes of Health (NIH) S10 awards, and Koch Institute Support (core) Grant P30-CA14051 from the National Cancer Institute. T.P. was supported by the American Cancer Society and Hope Funds for Cancer Research. The laboratory of T.P. is supported by the NIH (K22CA201088-01) and the New York University Department of Pathology Bridge Grant. R.R. was supported by the National Science Foundation Graduate Research Fellowship under grant number 1122374. V.I.S. received support from the Swedish Medical Research Council, the AG Fond, and the Wenner-Gren Foundations and is the recipient of EMBO long-term fellowship ALTF 1451-2015 that is co-funded by the European Commission (LTCOFUND2013, GA-2013-609409) with support from Marie Curie Actions. S.E.L. is supported by an NIH training grant (5T32HL007151-38). Human tumor collection by H.I.P. was supported by a National Cancer Institute Early Detection Research Network grant (2U01CA 111295-04). Research in the laboratory of T.J. was supported by Cancer Center Support Grant P30-CA14051 and the Howard Hughes Medical Institute.
PY - 2017/11/1
Y1 - 2017/11/1
N2 - Treating KRAS-mutant lung adenocarcinoma (LUAD) remains a major challenge in cancer treatment given the difficulties associated with directly inhibiting the KRAS oncoprotein. One approach to addressing this challenge is to define mutations that frequently co-occur with those in KRAS, which themselves may lead to therapeutic vulnerabilities in tumors. Approximately 20% of KRAS-mutant LUAD tumors carry loss-of-function mutations in the KEAP1 gene encoding Kelch-like ECH-associated protein 1 (refs. 2, 3, 4), a negative regulator of nuclear factor erythroid 2-like 2 (NFE2L2; hereafter NRF2), which is the master transcriptional regulator of the endogenous antioxidant response. The high frequency of mutations in KEAP1 suggests an important role for the oxidative stress response in lung tumorigenesis. Using a CRISPR-Cas9-based approach in a mouse model of KRAS-driven LUAD, we examined the effects of Keap1 loss in lung cancer progression. We show that loss of Keap1 hyperactivates NRF2 and promotes KRAS-driven LUAD in mice. Through a combination of CRISPR-Cas9-based genetic screening and metabolomic analyses, we show that Keap1- or Nrf2-mutant cancers are dependent on increased glutaminolysis, and this property can be therapeutically exploited through the pharmacological inhibition of glutaminase. Finally, we provide a rationale for stratification of human patients with lung cancer harboring KRAS/KEAP1- or KRAS/NRF2-mutant lung tumors as likely to respond to glutaminase inhibition.
AB - Treating KRAS-mutant lung adenocarcinoma (LUAD) remains a major challenge in cancer treatment given the difficulties associated with directly inhibiting the KRAS oncoprotein. One approach to addressing this challenge is to define mutations that frequently co-occur with those in KRAS, which themselves may lead to therapeutic vulnerabilities in tumors. Approximately 20% of KRAS-mutant LUAD tumors carry loss-of-function mutations in the KEAP1 gene encoding Kelch-like ECH-associated protein 1 (refs. 2, 3, 4), a negative regulator of nuclear factor erythroid 2-like 2 (NFE2L2; hereafter NRF2), which is the master transcriptional regulator of the endogenous antioxidant response. The high frequency of mutations in KEAP1 suggests an important role for the oxidative stress response in lung tumorigenesis. Using a CRISPR-Cas9-based approach in a mouse model of KRAS-driven LUAD, we examined the effects of Keap1 loss in lung cancer progression. We show that loss of Keap1 hyperactivates NRF2 and promotes KRAS-driven LUAD in mice. Through a combination of CRISPR-Cas9-based genetic screening and metabolomic analyses, we show that Keap1- or Nrf2-mutant cancers are dependent on increased glutaminolysis, and this property can be therapeutically exploited through the pharmacological inhibition of glutaminase. Finally, we provide a rationale for stratification of human patients with lung cancer harboring KRAS/KEAP1- or KRAS/NRF2-mutant lung tumors as likely to respond to glutaminase inhibition.
UR - https://www.scopus.com/pages/publications/85032896356
U2 - 10.1038/nm.4407
DO - 10.1038/nm.4407
M3 - Article
C2 - 28967920
AN - SCOPUS:85032896356
SN - 1078-8956
VL - 23
SP - 1362
EP - 1368
JO - Nature Medicine
JF - Nature Medicine
IS - 11
ER -