TY - JOUR
T1 - Kai‑Xin‑San suppresses matrix metalloproteinases and myocardial apoptosis in rats with myocardial infarction and depression
AU - Hu, Yuan
AU - Dong, Xianzhe
AU - Zhang, Tianyi
AU - Ma, Hongming
AU - Yang, Wenshan
AU - Wang, Yichen
AU - Liu, Ping
AU - Chen, Yibang
PY - 2020/1/1
Y1 - 2020/1/1
N2 - Depression is often triggered by prolonged exposure to psychosocial stressors and associated with coronary heart disease (CHD). Matrix metalloproteinases (MMPs) are involved in the pathogenesis of various emotional and cardiovascular disorders. The purpose of this study was to investigate whether Kai‑Xin‑San (KXS), which may terminate the signaling of MMPs, exerts antidepressant‑like and cardioprotective effects in a myocardial infarction (MI) plus depression rat model. Rats were randomly assigned to five groups: A normal control (control group), a celisc‑injection of isopropyl adrenaline group (ISO group), depression (depression group), an ISO + depression (depression + ISO group), and an ISO + depression group treated with intragastric administration of 1,785 mg/kg KXS (KXS group). Behavioral changes, echocardiography, biochemical index, matrix metalloproteinase (MMP) and apoptosis‑related proteins were assessed. Compared with the depression + ISO group, KXS significantly improved stress‑induced alterations of behavioral parameters and protected the heart by enlarging the left ventricular (LV) fractional shortening (FS) and LV ejection fraction (EF). Moreover, KXS significantly attenuated ISO + depression‑induced MMP‑2 and MMP‑9 expression at the mRNA and protein level and decreased TIMP in the heart compared to the complex model group. Myocardial apoptosis was significantly attenuated by KXS by regulating the Bcl‑2/Bax axis. These results indicated that MI comorbid with depression may damage the MMP balance in the central and peripheral system, and KXS may have a direct anti‑depressive and cardio‑protective effect by regulating the level of MMPs and associated myocardial apoptosis. It is promising to further explore the clinical potential of KXS for the therapy or prevention of MI plus depression comorbidity disease.
AB - Depression is often triggered by prolonged exposure to psychosocial stressors and associated with coronary heart disease (CHD). Matrix metalloproteinases (MMPs) are involved in the pathogenesis of various emotional and cardiovascular disorders. The purpose of this study was to investigate whether Kai‑Xin‑San (KXS), which may terminate the signaling of MMPs, exerts antidepressant‑like and cardioprotective effects in a myocardial infarction (MI) plus depression rat model. Rats were randomly assigned to five groups: A normal control (control group), a celisc‑injection of isopropyl adrenaline group (ISO group), depression (depression group), an ISO + depression (depression + ISO group), and an ISO + depression group treated with intragastric administration of 1,785 mg/kg KXS (KXS group). Behavioral changes, echocardiography, biochemical index, matrix metalloproteinase (MMP) and apoptosis‑related proteins were assessed. Compared with the depression + ISO group, KXS significantly improved stress‑induced alterations of behavioral parameters and protected the heart by enlarging the left ventricular (LV) fractional shortening (FS) and LV ejection fraction (EF). Moreover, KXS significantly attenuated ISO + depression‑induced MMP‑2 and MMP‑9 expression at the mRNA and protein level and decreased TIMP in the heart compared to the complex model group. Myocardial apoptosis was significantly attenuated by KXS by regulating the Bcl‑2/Bax axis. These results indicated that MI comorbid with depression may damage the MMP balance in the central and peripheral system, and KXS may have a direct anti‑depressive and cardio‑protective effect by regulating the level of MMPs and associated myocardial apoptosis. It is promising to further explore the clinical potential of KXS for the therapy or prevention of MI plus depression comorbidity disease.
UR - http://www.scopus.com/inward/record.url?scp=85077799921&partnerID=8YFLogxK
U2 - 10.3892/mmr.2019.10807
DO - 10.3892/mmr.2019.10807
M3 - Article
C2 - 31746394
AN - SCOPUS:85077799921
SN - 1791-2997
VL - 21
SP - 508
EP - 516
JO - Molecular Medicine Reports
JF - Molecular Medicine Reports
IS - 1
ER -