TY - JOUR
T1 - Involvement of acid β-glucosidase 1 in the salvage pathway of ceramide formation
AU - Kitatani, Kazuyuki
AU - Sheldon, Kely
AU - Rajagopalan, Vinodh
AU - Anelli, Viviana
AU - Jenkins, Russell W.
AU - Sun, Ying
AU - Grabowski, Gregory A.
AU - Obeid, Lina M.
AU - Hannun, Yusuf A.
PY - 2009/5/8
Y1 - 2009/5/8
N2 - Activation of protein kinase C (PKC) promotes the salvage pathway of ceramide formation, and acid sphingomyelinase has been implicated, in part, in providing substrate for this pathway (Zeidan, Y. H., and Hannun, Y. A. (2007) J. Biol. Chem. 282, 11549-11561). In the present study, we examined whether acid β-glucosidase 1 (GBA1), which hydrolyzes glucosylceramide to form lysosomal ceramide, was involved in PKC-regulated formation of ceramide from recycled sphingosine. Glucosylceramide levels declined after treatment of MCF-7 cells with a potent PKC activator, phorbol 12-myristate 13-acetate (PMA). Silencing GBA1 by small interfering RNAs significantly attenuated acid glucocerebrosidase activity and decreased PMA-induced formation of ceramide by 50%. Silencing GBA1 blocked PMA-induced degradation of glucosylceramide and generation of sphingosine, the source for ceramide biosynthesis. Reciprocally, forced expression of GBA1 increased ceramide levels. These observations indicate that GBA1 activation can generate the source (sphingosine) for PMA-induced formation of ceramide through the salvage pathway. Next, the role of PKCδ, a direct effector of PMA, in the formation of ceramide was determined. By attenuating expression of PKCδ, cells failed to trigger PMA-induced alterations in levels of ceramide, sphingomyelin, and glucosylceramide. Thus, PKCδ activation is suggested to stimulate the degradation of both sphingomyelin and glucosylceramide leading to the salvage pathway of ceramide formation. Collectively, GBA1 is identified as a novel source of regulated formation of ceramide, and PKCδ is an upstream regulator of this pathway.
AB - Activation of protein kinase C (PKC) promotes the salvage pathway of ceramide formation, and acid sphingomyelinase has been implicated, in part, in providing substrate for this pathway (Zeidan, Y. H., and Hannun, Y. A. (2007) J. Biol. Chem. 282, 11549-11561). In the present study, we examined whether acid β-glucosidase 1 (GBA1), which hydrolyzes glucosylceramide to form lysosomal ceramide, was involved in PKC-regulated formation of ceramide from recycled sphingosine. Glucosylceramide levels declined after treatment of MCF-7 cells with a potent PKC activator, phorbol 12-myristate 13-acetate (PMA). Silencing GBA1 by small interfering RNAs significantly attenuated acid glucocerebrosidase activity and decreased PMA-induced formation of ceramide by 50%. Silencing GBA1 blocked PMA-induced degradation of glucosylceramide and generation of sphingosine, the source for ceramide biosynthesis. Reciprocally, forced expression of GBA1 increased ceramide levels. These observations indicate that GBA1 activation can generate the source (sphingosine) for PMA-induced formation of ceramide through the salvage pathway. Next, the role of PKCδ, a direct effector of PMA, in the formation of ceramide was determined. By attenuating expression of PKCδ, cells failed to trigger PMA-induced alterations in levels of ceramide, sphingomyelin, and glucosylceramide. Thus, PKCδ activation is suggested to stimulate the degradation of both sphingomyelin and glucosylceramide leading to the salvage pathway of ceramide formation. Collectively, GBA1 is identified as a novel source of regulated formation of ceramide, and PKCδ is an upstream regulator of this pathway.
UR - http://www.scopus.com/inward/record.url?scp=67649710875&partnerID=8YFLogxK
U2 - 10.1074/jbc.M802790200
DO - 10.1074/jbc.M802790200
M3 - Article
C2 - 19279011
AN - SCOPUS:67649710875
SN - 0021-9258
VL - 284
SP - 12972
EP - 12978
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 19
ER -