TY - JOUR
T1 - Intracoronary administration of allogeneic adipose tissue-derived mesenchymal stem cells improves myocardial perfusion but not left ventricle function, in a translational model of acute myocardial infarction
AU - Bobi, Joaquim
AU - Solanes, Núria
AU - Fernández-Jiménez, Rodrigo
AU - Galán-Arriola, Carlos
AU - Dantas, Ana Paula
AU - Fernández-Friera, Leticia
AU - Gálvez-Montón, Carolina
AU - Rigol-Monzó, Elisabet
AU - Agüero, Jaume
AU - Ramírez, José
AU - Roqué, Mercè
AU - Bayés-Genís, Antoni
AU - Sánchez-González, Javier
AU - García-Álvarez, Ana
AU - Sabaté, Manel
AU - Roura, Santiago
AU - Ibáñez, Borja
AU - Rigol, Montserrat
N1 - Publisher Copyright:
© 2017 The Authors.
PY - 2017/5/1
Y1 - 2017/5/1
N2 - Background- Autologous adipose tissue-derived mesenchymal stem cells (ATMSCs) therapy is a promising strategy to improve post-myocardial infarction outcomes. In a porcine model of acute myocardial infarction, we studied the long-term effects and the mechanisms involved in allogeneic ATMSCs administration on myocardial performance. Methods and Results- Thirty-eight pigs underwent 50 minutes of coronary occlusion; the study was completed in 33 pigs. After reperfusion, allogeneic ATMSCs or culture medium (vehicle) were intracoronarily administered. Follow-ups were performed at short (2 days after acute myocardial infarction vehicle-treated, n=10; ATMSCs-treated, n=9) or long term (60 days after acute myocardial infarction vehicle-treated, n=7; ATMSCs-treated, n=7). At short term, infarcted myocardium analysis showed reduced apoptosis in the ATMSCs-treated animals (48.6±6% versus 55.9±5.7% in vehicle; P=0.017); enhancement of the reparative process with up-regulated vascular endothelial growth factor, granulocyte macrophage colony-stimulating factor, and stromal-derived factor-1a gene expression; and increased M2 macrophages (67.2±10% versus 54.7±10.2% in vehicle; P=0.016). In long-term groups, increase in myocardial perfusion at the anterior infarct border was observed both on day-7 and day-60 cardiac magnetic resonance studies in ATMSCs-treated animals, compared to vehicle (87.9±28.7 versus 57.4±17.7 mL/min per gram at 7 days; P=0.034 and 99±22.6 versus 43.3±14.7 22.6 mL/min per gram at 60 days; P=0.0001, respectively). At day 60, higher vascular density was detected at the border zone in the ATMSCs-treated animals (118±18 versus 92.4±24.3 vessels/mm2 in vehicle; P=0.045). Cardiac magnetic resonance-measured left ventricular ejection fraction of left ventricular volumes was not different between groups at any time point. Conclusions- In this porcine acute myocardial infarction model, allogeneic ATMSCs-based therapy was associated with increased cardioprotective and reparative mechanisms and with better cardiac magnetic resonance-measured perfusion. No effect on left ventricular volumes or ejection fraction was observed.
AB - Background- Autologous adipose tissue-derived mesenchymal stem cells (ATMSCs) therapy is a promising strategy to improve post-myocardial infarction outcomes. In a porcine model of acute myocardial infarction, we studied the long-term effects and the mechanisms involved in allogeneic ATMSCs administration on myocardial performance. Methods and Results- Thirty-eight pigs underwent 50 minutes of coronary occlusion; the study was completed in 33 pigs. After reperfusion, allogeneic ATMSCs or culture medium (vehicle) were intracoronarily administered. Follow-ups were performed at short (2 days after acute myocardial infarction vehicle-treated, n=10; ATMSCs-treated, n=9) or long term (60 days after acute myocardial infarction vehicle-treated, n=7; ATMSCs-treated, n=7). At short term, infarcted myocardium analysis showed reduced apoptosis in the ATMSCs-treated animals (48.6±6% versus 55.9±5.7% in vehicle; P=0.017); enhancement of the reparative process with up-regulated vascular endothelial growth factor, granulocyte macrophage colony-stimulating factor, and stromal-derived factor-1a gene expression; and increased M2 macrophages (67.2±10% versus 54.7±10.2% in vehicle; P=0.016). In long-term groups, increase in myocardial perfusion at the anterior infarct border was observed both on day-7 and day-60 cardiac magnetic resonance studies in ATMSCs-treated animals, compared to vehicle (87.9±28.7 versus 57.4±17.7 mL/min per gram at 7 days; P=0.034 and 99±22.6 versus 43.3±14.7 22.6 mL/min per gram at 60 days; P=0.0001, respectively). At day 60, higher vascular density was detected at the border zone in the ATMSCs-treated animals (118±18 versus 92.4±24.3 vessels/mm2 in vehicle; P=0.045). Cardiac magnetic resonance-measured left ventricular ejection fraction of left ventricular volumes was not different between groups at any time point. Conclusions- In this porcine acute myocardial infarction model, allogeneic ATMSCs-based therapy was associated with increased cardioprotective and reparative mechanisms and with better cardiac magnetic resonance-measured perfusion. No effect on left ventricular volumes or ejection fraction was observed.
KW - Adipose tissue-derived mesenchymal stem cells
KW - Allogeneic origin
KW - Myocardial infarction
KW - Myocardial perfusion
KW - Vascular density
UR - http://www.scopus.com/inward/record.url?scp=85019349113&partnerID=8YFLogxK
U2 - 10.1161/JAHA.117.005771
DO - 10.1161/JAHA.117.005771
M3 - Article
C2 - 28468789
AN - SCOPUS:85019349113
SN - 2047-9980
VL - 6
JO - Journal of the American Heart Association
JF - Journal of the American Heart Association
IS - 5
M1 - e005771
ER -