TY - JOUR
T1 - Integrin-associated CD151 is a suppressor of prostate cancer progression
AU - Han, Rongbo
AU - Hensley, Patrick J.
AU - Li, Jieming
AU - Zhang, Yang
AU - Stark, Timothy W.
AU - Heller, Allie
AU - Qian, Hai
AU - Shi, Junfeng
AU - Liu, Zeyi
AU - Huang, Jian An
AU - Jin, Tengchuan
AU - Wei, Xiaowei
AU - Zhou, Binhua P.
AU - Wu, Yadi
AU - Kyprianou, Natasha
AU - Chen, Jinfei
AU - Yang, Xiuwei H.
N1 - Publisher Copyright:
© 2020 E-Century Publishing Corporation. All rights reserved.
PY - 2020
Y1 - 2020
N2 - Owing to the complexity of interacting molecular networks on the cell surface, integrin-associated tetraspanin CD151 remains controversial regarding its clinical importance and functional impact in prostate cancer. The current study evaluated dynamics and clinical importance of CD151 expression and its function in prostate cancer by IHC analysis of two independent patient cohorts (n=80, 181), bioinformatic interrogation of the TCGA database, and evaluation of gene knockdown effect at the cellular level. Our data showed that aside from high mRNA expression, CD151 was primarily localized to intercellular junctions at the plasma membrane in normal prostate glands or benign tissues, regardless of nature of antibodies used. By contrast, in primary tumors from patients with metastatic disease, CD151 was largely localized in the cytosol. Furthermore, the level of the cell-cell junction-linked CD151 was inversely associated with Gleason grade and tumor stage (P<0.001 for both). The portion of primary tumors expressing junctional CD151 was also three-fold less in the metastatic patient population than its counterpart (P<0.001). In line with these observations, CD151 and its associated α3β1 or α6β4 integrin inversely correlated with androgen receptor (AR) at the mRNA level (Spearman coefficient: -0.44, -0.48 and -0.42) in the TCGA cohort. Expression of these adhesion molecules also correlated with DNA methylation in their promoters (Spearman coefficient: -0.37, -0.71 and -0.82). Combined, these data suggest that CD151 and associated integrins are linked to tumor metastasis through AR and the epigenetic program. Meanwhile, CD151 knockdown in E-cadherin-positive tumor cells led to increased cell proliferation and induction of the epithelial-mesenchymal transition (EMT)-like phenotype. Given the strong RGD-binding integrin dependence of EMT-featured tumor cells, we examined focal adhesion kinase (FAK), their key signaling effector, in the above patient cohorts. In contrast to CD151, FAK exhibited positive correlation with tumor grade and stage as well as AR and p53 inactivation at either mRNA, protein or genomic level. Taken together, our results suggest that CD151 represses prostate cancer by antagonizing cell proliferation, EMT and the signaling of RGD-binding integrins. Since this anti-tumorigenic role is prone to the AR-mediated transcriptional and epigenetic regulation, CD151 and possibly α3β1 and α6β4 integrins are of potential biomarkers for metastatic prostate cancer.
AB - Owing to the complexity of interacting molecular networks on the cell surface, integrin-associated tetraspanin CD151 remains controversial regarding its clinical importance and functional impact in prostate cancer. The current study evaluated dynamics and clinical importance of CD151 expression and its function in prostate cancer by IHC analysis of two independent patient cohorts (n=80, 181), bioinformatic interrogation of the TCGA database, and evaluation of gene knockdown effect at the cellular level. Our data showed that aside from high mRNA expression, CD151 was primarily localized to intercellular junctions at the plasma membrane in normal prostate glands or benign tissues, regardless of nature of antibodies used. By contrast, in primary tumors from patients with metastatic disease, CD151 was largely localized in the cytosol. Furthermore, the level of the cell-cell junction-linked CD151 was inversely associated with Gleason grade and tumor stage (P<0.001 for both). The portion of primary tumors expressing junctional CD151 was also three-fold less in the metastatic patient population than its counterpart (P<0.001). In line with these observations, CD151 and its associated α3β1 or α6β4 integrin inversely correlated with androgen receptor (AR) at the mRNA level (Spearman coefficient: -0.44, -0.48 and -0.42) in the TCGA cohort. Expression of these adhesion molecules also correlated with DNA methylation in their promoters (Spearman coefficient: -0.37, -0.71 and -0.82). Combined, these data suggest that CD151 and associated integrins are linked to tumor metastasis through AR and the epigenetic program. Meanwhile, CD151 knockdown in E-cadherin-positive tumor cells led to increased cell proliferation and induction of the epithelial-mesenchymal transition (EMT)-like phenotype. Given the strong RGD-binding integrin dependence of EMT-featured tumor cells, we examined focal adhesion kinase (FAK), their key signaling effector, in the above patient cohorts. In contrast to CD151, FAK exhibited positive correlation with tumor grade and stage as well as AR and p53 inactivation at either mRNA, protein or genomic level. Taken together, our results suggest that CD151 represses prostate cancer by antagonizing cell proliferation, EMT and the signaling of RGD-binding integrins. Since this anti-tumorigenic role is prone to the AR-mediated transcriptional and epigenetic regulation, CD151 and possibly α3β1 and α6β4 integrins are of potential biomarkers for metastatic prostate cancer.
KW - CD151
KW - EMT
KW - Integrins
KW - Metastasis
KW - Prostate cancer
KW - Tetraspanin
UR - http://www.scopus.com/inward/record.url?scp=85084236787&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85084236787
SN - 1943-8141
VL - 12
SP - 1428
EP - 1442
JO - American Journal of Translational Research
JF - American Journal of Translational Research
IS - 4
ER -