TY - JOUR
T1 - Integrated Drug Mining Reveals Actionable Strategies Inhibiting Plexiform Neurofibromas
AU - Brown, Rebeccam
AU - Sait, Sameerfarouk
AU - Dunn, Griffin
AU - Sullivan, Alanna
AU - Bruckert, Benjamin
AU - Sun, Daochun
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/6
Y1 - 2022/6
N2 - Neurofibromatosis Type 1 (NF1) is one of the most common genetic tumor predisposition syndromes, affecting up to 1 in 2500 individuals. Up to half of patients with NF1 develop benign nerve sheath tumors called plexiform neurofibromas (PNs), characterized by biallelic NF1 loss. PNs can grow to immense sizes, cause extensive morbidity, and harbor a 15% lifetime risk of malignant transformation. Increasingly, molecular sequencing and drug screening data from various preclinical murine and human PN cell lines, murine models, and human PN tissues are available to help identify salient treatments for PNs. Despite this, Selumetinib, a MEK inhibitor, is the only currently FDA-approved pharmacotherapy for symptomatic and inoperable PNs in pediatric NF1 patients. The discovery of alternative and additional treatments has been hampered by the rarity of the disease, which makes prioritizing drugs to be tested in future clinical trials immensely important. Here, we propose a gene regulatory network-based integrated analysis to mine high-throughput cell linebased drug data combined with transcriptomes from resected human PN tumors. Conserved network modules were characterized and served as drug fingerprints reflecting the biological connections among drug effects and the inherent properties of PN cell lines and tissue. Drug candidates were ranked, and the therapeutic potential of drug combinations was evaluated via computational predication. Auspicious therapeutic agents and drug combinations were proposed for further investigation in preclinical and clinical trials.
AB - Neurofibromatosis Type 1 (NF1) is one of the most common genetic tumor predisposition syndromes, affecting up to 1 in 2500 individuals. Up to half of patients with NF1 develop benign nerve sheath tumors called plexiform neurofibromas (PNs), characterized by biallelic NF1 loss. PNs can grow to immense sizes, cause extensive morbidity, and harbor a 15% lifetime risk of malignant transformation. Increasingly, molecular sequencing and drug screening data from various preclinical murine and human PN cell lines, murine models, and human PN tissues are available to help identify salient treatments for PNs. Despite this, Selumetinib, a MEK inhibitor, is the only currently FDA-approved pharmacotherapy for symptomatic and inoperable PNs in pediatric NF1 patients. The discovery of alternative and additional treatments has been hampered by the rarity of the disease, which makes prioritizing drugs to be tested in future clinical trials immensely important. Here, we propose a gene regulatory network-based integrated analysis to mine high-throughput cell linebased drug data combined with transcriptomes from resected human PN tumors. Conserved network modules were characterized and served as drug fingerprints reflecting the biological connections among drug effects and the inherent properties of PN cell lines and tissue. Drug candidates were ranked, and the therapeutic potential of drug combinations was evaluated via computational predication. Auspicious therapeutic agents and drug combinations were proposed for further investigation in preclinical and clinical trials.
KW - Drug screening
KW - Gene network
KW - Neurofibromatosis type 1
KW - Plexiform neurofibromas
UR - http://www.scopus.com/inward/record.url?scp=85134032406&partnerID=8YFLogxK
U2 - 10.3390/brainsci12060720
DO - 10.3390/brainsci12060720
M3 - Article
AN - SCOPUS:85134032406
SN - 2076-3425
VL - 12
JO - Brain Sciences
JF - Brain Sciences
IS - 6
M1 - 720
ER -