TY - JOUR
T1 - Insulin-like growth factor-I rapidly activates multiple signal transduction pathways in cultured rat cardiac myocytes
AU - Foncea, Rocío
AU - Andersson, Monica
AU - Ketterman, Albert
AU - Blakesley, Vicky
AU - Sapag-Hagar, Mario
AU - Sugden, Peter H.
AU - LeRoith, Derek
AU - Lavandero, Sergio
PY - 1997/8/1
Y1 - 1997/8/1
N2 - In response to insulin-like growth factor-I (IGF-I), neonatal rat cardiac myocytes exhibit a hypertrophic response. The elucidation of the IGF- I signal transduction system in these cells remains unknown. We show here that cardiac myocytes present a single class of high affinity receptors (12,446 ± 3,669 binding sites/cell) with a dissociation constant of 0.36 ± 0.10 nM. Two different β-subunits of IGF-I receptor were detected, and their autophosphorylation was followed by increases in the phosphetyrosine content of extracellular signal-regulated kinases (ERKs), insulin receptor substrate 1, phospholipase C-γ1, and phosphatidylinositol 3-kinase. IGF.I transiently activates c-Raf in cultured neonatal cardiac myocytes, whereas A-raf is activated much less than c-Raf. Two peaks of ERK activity (ERK1 and ERK2) were resolved in cardiac myocytes treated with IGF-I by fast protein liquid chromatography, both being stimulated by IGF-I (with EC50 values for the stimulation of ERK1 and ERK2 by IGF-I of 0.10 and 0.12 nM, respectively). Maximal activation of ERK2 (12-fold) and ERK1 (8.3-fold) activities was attained after a 5-min exposure to IGF-I. Maximal activation of p90 S6 kinase by IGF-I was achieved after 10 min, and then the activity decreased slowly. Interestingly, IGF-I stimulates incorporation of [3H]phenylalanine (1.6- fold) without any effect on [3H]thymidine incorporation. These data suggest that IGF-I activates multiple signal transduction pathways in cardiac myocytes some of which may be relevant to the hypertrophic response of the heart.
AB - In response to insulin-like growth factor-I (IGF-I), neonatal rat cardiac myocytes exhibit a hypertrophic response. The elucidation of the IGF- I signal transduction system in these cells remains unknown. We show here that cardiac myocytes present a single class of high affinity receptors (12,446 ± 3,669 binding sites/cell) with a dissociation constant of 0.36 ± 0.10 nM. Two different β-subunits of IGF-I receptor were detected, and their autophosphorylation was followed by increases in the phosphetyrosine content of extracellular signal-regulated kinases (ERKs), insulin receptor substrate 1, phospholipase C-γ1, and phosphatidylinositol 3-kinase. IGF.I transiently activates c-Raf in cultured neonatal cardiac myocytes, whereas A-raf is activated much less than c-Raf. Two peaks of ERK activity (ERK1 and ERK2) were resolved in cardiac myocytes treated with IGF-I by fast protein liquid chromatography, both being stimulated by IGF-I (with EC50 values for the stimulation of ERK1 and ERK2 by IGF-I of 0.10 and 0.12 nM, respectively). Maximal activation of ERK2 (12-fold) and ERK1 (8.3-fold) activities was attained after a 5-min exposure to IGF-I. Maximal activation of p90 S6 kinase by IGF-I was achieved after 10 min, and then the activity decreased slowly. Interestingly, IGF-I stimulates incorporation of [3H]phenylalanine (1.6- fold) without any effect on [3H]thymidine incorporation. These data suggest that IGF-I activates multiple signal transduction pathways in cardiac myocytes some of which may be relevant to the hypertrophic response of the heart.
UR - http://www.scopus.com/inward/record.url?scp=0030803878&partnerID=8YFLogxK
U2 - 10.1074/jbc.272.31.19115
DO - 10.1074/jbc.272.31.19115
M3 - Article
C2 - 9235900
AN - SCOPUS:0030803878
SN - 0021-9258
VL - 272
SP - 19115
EP - 19124
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 31
ER -