TY - JOUR
T1 - Insulin-like growth factor-I (IGF-I) receptor activation rescues UV-damaged cells through a p38 signaling pathway
T2 - Potential role of the IGF-I receptor in DNA repair
AU - Héron-Milhavet, Lisa
AU - Karas, Michael
AU - Goldsmith, Corinne M.
AU - Baum, Bruce J.
AU - LeRoith, Derek
PY - 2001/1/25
Y1 - 2001/1/25
N2 - The activated insulin-like growth factor-I receptor (IGF-IR) is implicated in mitogenesis, transformation, and anti-apoptosis. To investigate the role of the IGF-IR in protection from UV-mimetic-induced DNA damage, 4-nitroquinoline N-oxide (4-NQO) was used. In this study we show that the activation of the IGF-IR is capable of rescuing NWTb3 cells overexpressing normal IGF-IRs from 4-NQO-induced DNA damage as demonstrated by cellular proliferation assays. This action was specific for the IGF-IR since cells expressing dominant negative IGF-IRs were not rescued from 4-NQO UV-mimetic treatment. DNA damage induced by 4-NQO in NWTb3 cells was significantly decreased after IGF-IR activation as measured by comet assay. IGF-I was also able to overcome the cell cycle arrest, observed after 4-NQO treatment, thereby enhancing the ability of NWTb3 cells to enter S phase. Interestingly, the p38 mitogen-activated protein kinase pathway was shown to represent the main signaling pathway involved in the IGF-IR-mediated rescue of UV-like damaged cells. The ability of the IGF-IR to induce DNA repair was also demonstrated by infecting NWTb3 cells with UV-irradiated adenovirus. Activation of the IGF-IR resulted in enhanced β-galactosidase reporter gene activity demonstrating repair of the damaged DNA. This study indicates a direct role of the IGF system in the rescue of damaged cells via DNA repair.
AB - The activated insulin-like growth factor-I receptor (IGF-IR) is implicated in mitogenesis, transformation, and anti-apoptosis. To investigate the role of the IGF-IR in protection from UV-mimetic-induced DNA damage, 4-nitroquinoline N-oxide (4-NQO) was used. In this study we show that the activation of the IGF-IR is capable of rescuing NWTb3 cells overexpressing normal IGF-IRs from 4-NQO-induced DNA damage as demonstrated by cellular proliferation assays. This action was specific for the IGF-IR since cells expressing dominant negative IGF-IRs were not rescued from 4-NQO UV-mimetic treatment. DNA damage induced by 4-NQO in NWTb3 cells was significantly decreased after IGF-IR activation as measured by comet assay. IGF-I was also able to overcome the cell cycle arrest, observed after 4-NQO treatment, thereby enhancing the ability of NWTb3 cells to enter S phase. Interestingly, the p38 mitogen-activated protein kinase pathway was shown to represent the main signaling pathway involved in the IGF-IR-mediated rescue of UV-like damaged cells. The ability of the IGF-IR to induce DNA repair was also demonstrated by infecting NWTb3 cells with UV-irradiated adenovirus. Activation of the IGF-IR resulted in enhanced β-galactosidase reporter gene activity demonstrating repair of the damaged DNA. This study indicates a direct role of the IGF system in the rescue of damaged cells via DNA repair.
UR - http://www.scopus.com/inward/record.url?scp=0035947664&partnerID=8YFLogxK
U2 - 10.1074/jbc.M011490200
DO - 10.1074/jbc.M011490200
M3 - Article
C2 - 11278917
AN - SCOPUS:0035947664
SN - 0021-9258
VL - 276
SP - 18185
EP - 18192
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 21
ER -