Influenza Defective Interfering Virus Promotes Multiciliated Cell Differentiation and Reduces the Inflammatory Response in Mice

Chang Wang, Rebekah Honce, Mirella Salvatore, Daniela Chow, Davide Randazzo, Jianjun Yang, Nicholas M. Twells, Lara K. Mahal, Stacey Schultz-Cherry, Elodie Ghedin

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Influenza defective interfering (DI) viruses have long been considered promising antiviral candidates because of their ability to interfere with replication-competent viruses and induce antiviral immunity. However, the mechanisms underlying DI-mediated antiviral immunity have not been extensively explored. Here, we demonstrated the interferon (IFN)-independent protection conferred by the influenza DI virus against homologous virus infection in mice deficient in type I and III IFN signaling. We identified unique host signatures responding to DI coinfection by integrating transcriptional and posttranscriptional regulatory data. DI-treated mice exhibited reduced viral transcription, less intense inflammatory and innate immune responses, and primed multiciliated cell differentiation in their lungs at an early stage of infection, even in the absence of type I or III IFNs. This increased multiciliogenesis could also be detected at the protein level via the immunofluorescence staining of lung tissue from DI-treated mice. Overall, our study provides mechanistic insight into the protection mediated by DIs, implying a unifying theme involving inflammation and multiciliogenesis in maintaining respiratory homeostasis and revealing their IFN-independent antiviral activity.

Original languageEnglish
JournalJournal of Virology
Volume97
Issue number6
DOIs
StatePublished - Jun 2023
Externally publishedYes

Keywords

  • influenza

Fingerprint

Dive into the research topics of 'Influenza Defective Interfering Virus Promotes Multiciliated Cell Differentiation and Reduces the Inflammatory Response in Mice'. Together they form a unique fingerprint.

Cite this