TY - GEN
T1 - Incremental Learning in Time-series Data using Reinforcement Learning
AU - Shuqair, Mustafa
AU - Jimenez-Shahed, Joohi
AU - Ghoraani, Behnaz
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - System monitoring has become an area of interest with the increasing growth in wearable sensors and continuous monitoring tools. However, the generalizability of the classification models to unseen incoming data remains challenging. This paper proposes a novel architecture based on reinforcement learning (RL) to incre-mentally learn patterns of time-series data and detect changes in the system state. Our rationale is that RL's ability to learn from past experiences can help increase the performance and generalizability of classification models in time-series monitoring applications. Our novel definition of the environment consists of a set of one-class anomaly detectors to define environment states based on the dynamics of the incoming data and a reward function to reward the RL agent according to its actions. A deep RL agent incrementally learns to perform continuous, binary classification predictions according to the environment states and the received reward. We applied the proposed model for detecting response to medication (ON or OFF) in patients with Parkinson's disease (PD). The PD dataset consisted of 170 minutes of time-series movement signals collected from 12 patients using two wearable sensors. Our proposed model, with a testing accuracy of 77.95%, outperformed Adaptive Boosting, Multi-layer Perceptron, and Support Vector Machines with 53.10%, 44.92%, and 52.70% testing accuracy, respectively. The proposed model had a slight decline in the F-score, decreasing from 88.15% validation score to 78.42% in testing, a significantly slight decline compared to the other three models. These evidence the potential of the proposed RL-based classifier in time-series monitoring applications as a highly generalizable model for unseen incoming data.
AB - System monitoring has become an area of interest with the increasing growth in wearable sensors and continuous monitoring tools. However, the generalizability of the classification models to unseen incoming data remains challenging. This paper proposes a novel architecture based on reinforcement learning (RL) to incre-mentally learn patterns of time-series data and detect changes in the system state. Our rationale is that RL's ability to learn from past experiences can help increase the performance and generalizability of classification models in time-series monitoring applications. Our novel definition of the environment consists of a set of one-class anomaly detectors to define environment states based on the dynamics of the incoming data and a reward function to reward the RL agent according to its actions. A deep RL agent incrementally learns to perform continuous, binary classification predictions according to the environment states and the received reward. We applied the proposed model for detecting response to medication (ON or OFF) in patients with Parkinson's disease (PD). The PD dataset consisted of 170 minutes of time-series movement signals collected from 12 patients using two wearable sensors. Our proposed model, with a testing accuracy of 77.95%, outperformed Adaptive Boosting, Multi-layer Perceptron, and Support Vector Machines with 53.10%, 44.92%, and 52.70% testing accuracy, respectively. The proposed model had a slight decline in the F-score, decreasing from 88.15% validation score to 78.42% in testing, a significantly slight decline compared to the other three models. These evidence the potential of the proposed RL-based classifier in time-series monitoring applications as a highly generalizable model for unseen incoming data.
KW - Deep q-learning
KW - deep reinforcement learning
KW - incre-mental learning
KW - reinforcement learning
KW - system monitoring
KW - time-series data
UR - http://www.scopus.com/inward/record.url?scp=85148439284&partnerID=8YFLogxK
U2 - 10.1109/ICDMW58026.2022.00115
DO - 10.1109/ICDMW58026.2022.00115
M3 - Conference contribution
AN - SCOPUS:85148439284
T3 - IEEE International Conference on Data Mining Workshops, ICDMW
SP - 868
EP - 875
BT - Proceedings - 22nd IEEE International Conference on Data Mining Workshops, ICDMW 2022
A2 - Candan, K. Selcuk
A2 - Dinh, Thang N.
A2 - Thai, My T.
A2 - Washio, Takashi
PB - IEEE Computer Society
T2 - 22nd IEEE International Conference on Data Mining Workshops, ICDMW 2022
Y2 - 28 November 2022 through 1 December 2022
ER -