In vivo confirmation of hydration based contrast mechanisms for terahertz medical imaging using MRI

Neha Bajwa, Shijun Sung, James Garritano, Bryan Nowroozi, Priyamvada Tewari, Daniel B. Ennis, Jeffery Alger, Warren Grundfest, Zachary Taylor

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

Terahertz (THz) detection has been proposed and applied to a variety of medical imaging applications in view of its unrivaled hydration profiling capabilities. Variations in tissue dielectric function have been demonstrated at THz frequencies to generate high contrast imagery of tissue, however, the source of image contrast remains to be verified using a modality with a comparable sensing scheme. To investigate the primary contrast mechanism, a pilot comparison study was performed in a burn wound rat model, widely known to create detectable gradients in tissue hydration through both injured and surrounding tissue. Parallel T2 weighted multi slice multi echo (T2w MSME) 7T Magnetic Resonance (MR) scans and THz surface reflectance maps were acquired of a full thickness skin burn in a rat model over a 5 hour time period. A comparison of uninjured and injured regions in the full thickness burn demonstrates a 3-fold increase in average T2 relaxation times and a 15% increase in average THz reflectivity, respectively. These results support the sensitivity and specificity of MRI for measuring in vivo burn tissue water content and the use of this modality to verify and understand the hydration sensing capabilities of THz imaging for acute assessments of the onset and evolution of diseases that affect the skin. A starting point for more sophisticated in vivo studies, this preliminary analysis may be used in the future to explore how and to what extent the release of unbound water affects imaging contrast in THz burn sensing.

Original languageEnglish
Title of host publicationTerahertz Emitters, Receivers, and Applications V
EditorsAlexei N. Baranov, John M. Zavada, Dimitris Pavlidis, Manijeh Razeghi
PublisherSPIE
ISBN (Electronic)9781628412260
DOIs
StatePublished - 2014
Externally publishedYes
EventTerahertz Emitters, Receivers, and Applications V - San Diego, United States
Duration: 17 Aug 201418 Aug 2014

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume9199
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceTerahertz Emitters, Receivers, and Applications V
Country/TerritoryUnited States
CitySan Diego
Period17/08/1418/08/14

Keywords

  • Hydration
  • Hydration contrast
  • MRI
  • Reflective THz imaging
  • Relaxation times
  • Terahertz

Fingerprint

Dive into the research topics of 'In vivo confirmation of hydration based contrast mechanisms for terahertz medical imaging using MRI'. Together they form a unique fingerprint.

Cite this