Impaired inter-hemispheric integration in bipolar disorder revealed with brain network analyses

Alex Leow, Olusola Ajilore, Liang Zhan, Donatello Arienzo, Johnson Gadelkarim, Aifeng Zhang, Teena Moody, John Van Horn, Jamie Feusner, Anand Kumar, Paul Thompson, Lori Altshuler

Research output: Contribution to journalArticlepeer-review

94 Scopus citations


Background: This represents the first graph theory-based brain network analysis study in bipolar disorder, a chronic and disabling psychiatric disorder characterized by severe mood swings. Many imaging studies have investigated white matter in bipolar disorder, with results suggesting abnormal white matter structural integrity, particularly in the fronto-limbic and callosal systems. However, many inconsistencies remain in the literature, and no study to date has conducted brain network analyses with a graph-theoretic approach. Methods: We acquired 64-direction diffusion-weighted magnetic resonance imaging on 25 euthymic bipolar I disorder subjects and 24 gender- and age-equivalent healthy subjects. White matter integrity measures including fractional anisotropy and mean diffusivity were compared in the whole brain. Additionally, structural connectivity matrices based on whole-brain deterministic tractography were constructed, followed by the computation of both global and local brain network measures. We also designed novel metrics to further probe inter-hemispheric integration. Results: Network analyses revealed that the bipolar brain networks exhibited significantly longer characteristic path length, lower clustering coefficient, and lower global efficiency relative to those of control subjects. Further analyses revealed impaired inter-hemispheric but relatively preserved intra-hemispheric integration. These findings were supported by whole-brain white matter analyses that revealed significantly lower integrity in the corpus callosum in bipolar subjects. There were also abnormalities in nodal network measures in structures within the limbic system, especially the left hippocampus, the left lateral orbitofrontal cortex, and the bilateral isthmus cingulate. Conclusions: These results suggest abnormalities in structural network organization in bipolar disorder, particularly in inter-hemispheric integration and within the limbic system.

Original languageEnglish
Pages (from-to)183-193
Number of pages11
JournalBiological Psychiatry
Issue number2
StatePublished - 15 Jan 2013
Externally publishedYes


  • Bipolar disorder
  • DTI
  • brain imaging
  • brain network analysis
  • corpus callosum
  • hemispheric integration
  • limbic system


Dive into the research topics of 'Impaired inter-hemispheric integration in bipolar disorder revealed with brain network analyses'. Together they form a unique fingerprint.

Cite this