Impact of high-risk cytogenetics on outcomes for children and young adults receiving CD19-directed CAR T-cell therapy

Allison Barz Leahy, Kaitlin J. Devine, Yimei Li, Hongyan Liu, Regina Myers, Amanda DiNofia, Lisa Wray, Susan R. Rheingold, Colleen Callahan, Diane Baniewicz, Maria Patino, Haley Newman, Stephen P. Hunger, Stephan A. Grupp, David M. Barrett, Shannon L. Maude

Research output: Contribution to journalArticlepeer-review

56 Scopus citations

Abstract

Chimeric antigen receptor (CAR) T-cell therapy can induce durable remissions of relapsed/refractory B-acute lymphoblastic leukemia (ALL). However, case reports suggested differential outcomes mediated by leukemia cytogenetics. We identified children and young adults with relapsed/refractory CD19+ ALL/lymphoblastic lymphoma treated on 5 CD19-directed CAR T-cell (CTL019 or humanized CART19) clinical trials or with commercial tisagenlecleucel from April 2012 to April 2019. Patients were hierarchically categorized according to leukemia cytogenetics: High-risk lesions were defined as KMT2A (MLL) rearrangements, Philadelphia chromosome (Ph+), Ph-like, hypodiploidy, or TCF3/HLF; favorable as hyperdiploidy or ETV6/RUNX1; and intermediate as iAMP21, IKZF1 deletion, or TCF3/PBX1. Of 231 patients aged 1 to 29, 74 (32%) were categorized as high risk, 28 (12%) as intermediate, 43 (19%) as favorable, and 86 (37%) as uninformative. Overall complete remission rate was 94%, with no difference between strata. There was no difference in relapse-free survival (RFS; P = .8112), with 2-year RFS for the high-risk group of 63% (95% confidence interval [CI], 52-77). There was similarly no difference seen in overall survival (OS) (P = .5488), with 2-year OS for the high-risk group of 70% (95% CI, 60-82). For patients with KMT2A-rearranged infant ALL (n = 13), 2-year RFS was 67% (95% CI, 45-99), and OS was 62% (95% CI, 40-95), with multivariable analysis demonstrating no increased risk of relapse (hazard ratio, 0.70; 95% CI, 0.21-2.90; P = .7040) but a higher proportion of relapses associated with myeloid lineage switch and a 3.6-fold increased risk of all-cause death (95% CI, 1.04-12.75; P = .0434). CTL019/huCART19/tisagenlecleucel are effective at achieving durable remissions across cytogenetic categories. Relapsed/refractory patients with high-risk cytogenetics, including KMT2A-rearranged infant ALL, demonstrated high RFS and OS probabilities at 2 years.

Original languageEnglish
Pages (from-to)2173-2185
Number of pages13
JournalBlood
Volume139
Issue number14
DOIs
StatePublished - 7 Apr 2022
Externally publishedYes

Fingerprint

Dive into the research topics of 'Impact of high-risk cytogenetics on outcomes for children and young adults receiving CD19-directed CAR T-cell therapy'. Together they form a unique fingerprint.

Cite this