TY - JOUR
T1 - Identification of rare variants in TNNI3 with atrial fibrillation in a Chinese GeneID population
AU - Wang, Chuchu
AU - Wu, Manman
AU - Qian, Jin
AU - Li, Bin
AU - Tu, Xin
AU - Xu, Chengqi
AU - Li, Sisi
AU - Chen, Shanshan
AU - Zhao, Yuanyuan
AU - Huang, Yufeng
AU - Shi, Lisong
AU - Cheng, Xiang
AU - Liao, Yuhua
AU - Chen, Qiuyun
AU - Xia, Yunlong
AU - Yao, Wei
AU - Wu, Gang
AU - Cheng, Mian
AU - Wang, Qing K.
N1 - Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.
PY - 2016/2/1
Y1 - 2016/2/1
N2 - Despite advances by genome-wide association studies (GWAS), much of heritability of common human diseases remains missing, a phenomenon referred to as ‘missing heritability’. One potential cause for ‘missing heritability’ is the rare susceptibility variants overlooked by GWAS. Atrial fibrillation (AF) is the most common arrhythmia seen at hospitals and increases risk of stroke by fivefold and doubles risk of heart failure and sudden death. Here, we studied one large Chinese family with AF and hypertrophic cardiomyopathy (HCM). Whole-exome sequencing analysis identified a mutation in TNNI3, R186Q, that co-segregated with the disease in the family, but did not exist in >1583 controls, suggesting that R186Q causes AF and HCM. High-resolution melting curve analysis and direct DNA sequence analysis were then used to screen mutations in all exons and exon–intron boundaries of TNNI3 in a panel of 1127 unrelated AF patients and 1583 non-AF subjects. Four novel missense variants were identified in TNNI3, including E64G, M154L, E187G and D196G in four independent AF patients, but no variant was found in 1583 non-AF subjects. All variants were not found in public databases, including the ExAC Browser database with 60,706 exomes. These data suggest that rare TNNI3 variants are associated with AF (P = 0.03). TNNI3 encodes troponin I, a key regulator of the contraction–relaxation function of cardiac muscle and was not previously implicated in AF. Thus, this study may identify a new biological pathway for the pathogenesis of AF and provides evidence to support the rare variant hypothesis for missing heritability.
AB - Despite advances by genome-wide association studies (GWAS), much of heritability of common human diseases remains missing, a phenomenon referred to as ‘missing heritability’. One potential cause for ‘missing heritability’ is the rare susceptibility variants overlooked by GWAS. Atrial fibrillation (AF) is the most common arrhythmia seen at hospitals and increases risk of stroke by fivefold and doubles risk of heart failure and sudden death. Here, we studied one large Chinese family with AF and hypertrophic cardiomyopathy (HCM). Whole-exome sequencing analysis identified a mutation in TNNI3, R186Q, that co-segregated with the disease in the family, but did not exist in >1583 controls, suggesting that R186Q causes AF and HCM. High-resolution melting curve analysis and direct DNA sequence analysis were then used to screen mutations in all exons and exon–intron boundaries of TNNI3 in a panel of 1127 unrelated AF patients and 1583 non-AF subjects. Four novel missense variants were identified in TNNI3, including E64G, M154L, E187G and D196G in four independent AF patients, but no variant was found in 1583 non-AF subjects. All variants were not found in public databases, including the ExAC Browser database with 60,706 exomes. These data suggest that rare TNNI3 variants are associated with AF (P = 0.03). TNNI3 encodes troponin I, a key regulator of the contraction–relaxation function of cardiac muscle and was not previously implicated in AF. Thus, this study may identify a new biological pathway for the pathogenesis of AF and provides evidence to support the rare variant hypothesis for missing heritability.
KW - Atrial fibrillation (AF)
KW - Cardiac troponin I
KW - Hypertrophic cardiomyopathy
KW - TNNI3 mutations
KW - Whole exome sequencing
UR - https://www.scopus.com/pages/publications/84961326315
U2 - 10.1007/s00438-015-1090-y
DO - 10.1007/s00438-015-1090-y
M3 - Article
C2 - 26169204
AN - SCOPUS:84961326315
SN - 1617-4615
VL - 291
SP - 79
EP - 92
JO - Molecular Genetics and Genomics
JF - Molecular Genetics and Genomics
IS - 1
ER -