TY - JOUR
T1 - Identification of patients at risk of new onset heart failure
T2 - Utilizing a large statewide health information exchange to train and validate a risk prediction model
AU - Duong, Son Q.
AU - Zheng, Le
AU - Xia, Minjie
AU - Jin, Bo
AU - Liu, Modi
AU - Li, Zhen
AU - Hao, Shiying
AU - Alfreds, Shaun T.
AU - Sylvester, Karl G.
AU - Widen, Eric
AU - Teuteberg, Jeffery J.
AU - McElhinney, Doff B.
AU - Ling, Xuefeng B.
N1 - Publisher Copyright:
© 2021 Duong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2021/12
Y1 - 2021/12
N2 - Background New-onset heart failure (HF) is associated with poor prognosis and high healthcare utilization. Early identification of patients at increased risk incident-HF may allow for focused allocation of preventative care resources. Health information exchange (HIE) data span the entire spectrum of clinical care, but there are no HIE-based clinical decision support tools for diagnosis of incident-HF. We applied machine-learning methods to model the one-year risk of incident-HF from the Maine statewide-HIE. Methods and results We included subjects aged ≥ 40 years without prior HF ICD9/10 codes during a three-year period from 2015 to 2018, and incident-HF defined as assignment of two outpatient or one inpatient code in a year. A tree-boosting algorithm was used to model the probability of incident-HF in year two from data collected in year one, and then validated in year three. 5,668 of 521,347 patients (1.09%) developed incident-HF in the validation cohort. In the validation cohort, the model c-statistic was 0.824 and at a clinically predetermined risk threshold, 10% of patients identified by the model developed incident-HF and 29% of all incident-HF cases in the state of Maine were identified. Conclusions Utilizing machine learning modeling techniques on passively collected clinical HIE data, we developed and validated an incident-HF prediction tool that performs on par with other models that require proactively collected clinical data. Our algorithm could be integrated into other HIEs to leverage the EMR resources to provide individuals, systems, and payors with a risk stratification tool to allow for targeted resource allocation to reduce incident-HF disease burden on individuals and health care systems.
AB - Background New-onset heart failure (HF) is associated with poor prognosis and high healthcare utilization. Early identification of patients at increased risk incident-HF may allow for focused allocation of preventative care resources. Health information exchange (HIE) data span the entire spectrum of clinical care, but there are no HIE-based clinical decision support tools for diagnosis of incident-HF. We applied machine-learning methods to model the one-year risk of incident-HF from the Maine statewide-HIE. Methods and results We included subjects aged ≥ 40 years without prior HF ICD9/10 codes during a three-year period from 2015 to 2018, and incident-HF defined as assignment of two outpatient or one inpatient code in a year. A tree-boosting algorithm was used to model the probability of incident-HF in year two from data collected in year one, and then validated in year three. 5,668 of 521,347 patients (1.09%) developed incident-HF in the validation cohort. In the validation cohort, the model c-statistic was 0.824 and at a clinically predetermined risk threshold, 10% of patients identified by the model developed incident-HF and 29% of all incident-HF cases in the state of Maine were identified. Conclusions Utilizing machine learning modeling techniques on passively collected clinical HIE data, we developed and validated an incident-HF prediction tool that performs on par with other models that require proactively collected clinical data. Our algorithm could be integrated into other HIEs to leverage the EMR resources to provide individuals, systems, and payors with a risk stratification tool to allow for targeted resource allocation to reduce incident-HF disease burden on individuals and health care systems.
UR - http://www.scopus.com/inward/record.url?scp=85120998738&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0260885
DO - 10.1371/journal.pone.0260885
M3 - Article
C2 - 34890438
AN - SCOPUS:85120998738
SN - 1932-6203
VL - 16
JO - PLoS ONE
JF - PLoS ONE
IS - 12 December
M1 - e0260885
ER -