TY - JOUR
T1 - Identification of Novel Diarylpyrimidines as Potent HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors by Exploring the Primer Grip Region
AU - Zhang, Tao
AU - Zhou, Zhongxia
AU - Zhao, Fabao
AU - Sang, Zihao
AU - De Clercq, Erik
AU - Pannecouque, Christophe
AU - Kang, Dongwei
AU - Zhan, Peng
AU - Liu, Xinyong
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/11
Y1 - 2022/11
N2 - HIV-1 reverse transcriptase (RT) plays a crucial role in the viral replication cycle, and RT inhibitors can represent a promising pathway in treating AIDS. To explore the primer grip region of HIV-1 RT, using -CH2O- as a linker, substituted benzene or pyridine rings were introduced into the left wing of diarylpyrimidines (DAPYs). A total of 17 compounds with new structures were synthesized. It showed that all compounds exhibited anti-HIV-1 (wild-type) activity values ranging from 7.6–199.0 nM. Among them, TF2 (EC50 = 7.6 nM) showed the most potent activity, which was better than that of NVP (EC50 = 122.6 nM). Notably, compared with RPV (CC50 = 3.98 μM), TF2 (CC50 > 279,329.6 nM) showed low cytotoxicity. For HIV-1 mutant strains K103N and E138K, most compounds showed effective activities. Especially for K103N, TF2 (EC50 = 28.1 nM), TF12 (EC50 = 34.7 nM) and TF13 (EC50 = 28.0 nM) exhibited outstanding activity, being superior to that of NVP (EC50 = 7495.1 nM) and EFV (EC50 = 95.1 nM). Additionally, TF2 also showed the most potent activity against E138K (EC50 = 44.0 nM) and Y181C mutant strains (EC50 = 139.3 nM). In addition, all the compounds showed strong enzyme inhibition (IC50 = 0.036–0.483 μM), which demonstrated that their target was HIV-1 RT. Moreover, molecular dynamics simulation studies were implemented to predict the binding mode of TF2 in the binding pocket of wild-type and K103N HIV-1 RT.
AB - HIV-1 reverse transcriptase (RT) plays a crucial role in the viral replication cycle, and RT inhibitors can represent a promising pathway in treating AIDS. To explore the primer grip region of HIV-1 RT, using -CH2O- as a linker, substituted benzene or pyridine rings were introduced into the left wing of diarylpyrimidines (DAPYs). A total of 17 compounds with new structures were synthesized. It showed that all compounds exhibited anti-HIV-1 (wild-type) activity values ranging from 7.6–199.0 nM. Among them, TF2 (EC50 = 7.6 nM) showed the most potent activity, which was better than that of NVP (EC50 = 122.6 nM). Notably, compared with RPV (CC50 = 3.98 μM), TF2 (CC50 > 279,329.6 nM) showed low cytotoxicity. For HIV-1 mutant strains K103N and E138K, most compounds showed effective activities. Especially for K103N, TF2 (EC50 = 28.1 nM), TF12 (EC50 = 34.7 nM) and TF13 (EC50 = 28.0 nM) exhibited outstanding activity, being superior to that of NVP (EC50 = 7495.1 nM) and EFV (EC50 = 95.1 nM). Additionally, TF2 also showed the most potent activity against E138K (EC50 = 44.0 nM) and Y181C mutant strains (EC50 = 139.3 nM). In addition, all the compounds showed strong enzyme inhibition (IC50 = 0.036–0.483 μM), which demonstrated that their target was HIV-1 RT. Moreover, molecular dynamics simulation studies were implemented to predict the binding mode of TF2 in the binding pocket of wild-type and K103N HIV-1 RT.
KW - HIV-1
KW - NNRTIs
KW - diarylpyrimidines
KW - reverse transcriptase
UR - http://www.scopus.com/inward/record.url?scp=85149567444&partnerID=8YFLogxK
U2 - 10.3390/ph15111438
DO - 10.3390/ph15111438
M3 - Article
AN - SCOPUS:85149567444
SN - 1424-8247
VL - 15
JO - Pharmaceuticals
JF - Pharmaceuticals
IS - 11
M1 - 1438
ER -