TY - JOUR
T1 - Identification of markers that functionally define a quiescent multiple myeloma cell sub-population surviving bortezomib treatment
AU - Adomako, Alfred
AU - Calvo, Veronica
AU - Biran, Noa
AU - Osman, Keren
AU - Chari, Ajai
AU - Paton, James C.
AU - Paton, Adrienne W.
AU - Moore, Kateri
AU - Schewe, Denis M.
AU - Aguirre-Ghiso, Julio A.
N1 - Publisher Copyright:
© Adomako et al.; licensee BioMed Central.
PY - 2015/5/30
Y1 - 2015/5/30
N2 - Background: The mechanisms allowing residual multiple myeloma (MM) cells to persist after bortezomib (Bz) treatment remain unclear. We hypothesized that studying the biology of bortezomib-surviving cells may reveal markers to identify these cells and survival signals to target and kill residual MM cells. Methods: We used H2B-GFP label retention, biochemical tools and in vitro and in vivo experiments to characterize growth arrest and the unfolded protein responses in quiescent Bz-surviving cells. We also tested the effect of a demethylating agent, 5-Azacytidine, on Bz-induced quiescence and whether inhibiting the chaperone GRP78/BiP (henceforth GRP78) with a specific toxin induced apoptosis in Bz-surviving cells. Finally, we used MM patient samples to test whether GRP78 levels might associate with disease progression. Statistical analysis employed t-test and Mann-Whitney tests at a 95% confidence. Results: We report that Bz-surviving MM cells in vitro and in vivo enter quiescence characterized by p21CIP1 upregulation. Bz-surviving MM cells also downregulated CDK6, Ki67 and P-Rb. H2B-GFP label retention showed that Bz-surviving MM cells are either slow-cycling or deeply quiescent. The Bz-induced quiescence was stabilized by low dose (500nM) of 5-azacytidine (Aza) pre-treatment, which also potentiated the initial Bz-induced apoptosis. We also found that expression of GRP78, an unfolded protein response (UPR) survival factor, persisted in MM quiescent cells. Importantly, GRP78 downregulation using a specific SubAB bacterial toxin killed Bz-surviving MM cells. Finally, quantification of Grp78high/CD138+ MM cells from patients suggested that high levels correlated with progressive disease. Conclusions: We conclude that Bz-surviving MM cells display a GRP78HIGH/p21HIGH/CDK6LOW/P-RbLOW profile, and these markers may identify quiescent MM cells capable of fueling recurrences. We further conclude that Aza + Bz treatment of MM may represent a novel strategy to delay recurrences by enhancing Bz-induced apoptosis and quiescence stability.
AB - Background: The mechanisms allowing residual multiple myeloma (MM) cells to persist after bortezomib (Bz) treatment remain unclear. We hypothesized that studying the biology of bortezomib-surviving cells may reveal markers to identify these cells and survival signals to target and kill residual MM cells. Methods: We used H2B-GFP label retention, biochemical tools and in vitro and in vivo experiments to characterize growth arrest and the unfolded protein responses in quiescent Bz-surviving cells. We also tested the effect of a demethylating agent, 5-Azacytidine, on Bz-induced quiescence and whether inhibiting the chaperone GRP78/BiP (henceforth GRP78) with a specific toxin induced apoptosis in Bz-surviving cells. Finally, we used MM patient samples to test whether GRP78 levels might associate with disease progression. Statistical analysis employed t-test and Mann-Whitney tests at a 95% confidence. Results: We report that Bz-surviving MM cells in vitro and in vivo enter quiescence characterized by p21CIP1 upregulation. Bz-surviving MM cells also downregulated CDK6, Ki67 and P-Rb. H2B-GFP label retention showed that Bz-surviving MM cells are either slow-cycling or deeply quiescent. The Bz-induced quiescence was stabilized by low dose (500nM) of 5-azacytidine (Aza) pre-treatment, which also potentiated the initial Bz-induced apoptosis. We also found that expression of GRP78, an unfolded protein response (UPR) survival factor, persisted in MM quiescent cells. Importantly, GRP78 downregulation using a specific SubAB bacterial toxin killed Bz-surviving MM cells. Finally, quantification of Grp78high/CD138+ MM cells from patients suggested that high levels correlated with progressive disease. Conclusions: We conclude that Bz-surviving MM cells display a GRP78HIGH/p21HIGH/CDK6LOW/P-RbLOW profile, and these markers may identify quiescent MM cells capable of fueling recurrences. We further conclude that Aza + Bz treatment of MM may represent a novel strategy to delay recurrences by enhancing Bz-induced apoptosis and quiescence stability.
UR - http://www.scopus.com/inward/record.url?scp=84930644923&partnerID=8YFLogxK
U2 - 10.1186/s12885-015-1460-1
DO - 10.1186/s12885-015-1460-1
M3 - Article
C2 - 26025442
AN - SCOPUS:84930644923
SN - 1471-2407
VL - 15
JO - BMC Cancer
JF - BMC Cancer
IS - 1
M1 - 444
ER -