TY - JOUR
T1 - Human cytolytic T lymphocyte interactions with vascular endothelium and fibroblasts
T2 - Role of effector and target cell molecules
AU - Collins, T.
AU - Krensky, A. M.
AU - Clayberger, C.
AU - Fiers, W.
AU - Gimbrone, M. A.
AU - Burakoff, S. J.
AU - Pober, J. S.
PY - 1984
Y1 - 1984
N2 - Monoclonal antibodies (mAb) against cell surface structures have been used to identify several molecules involved in the interaction of human cytolytic T lymphocytes (CTL) with lymphoid and other bone marrow-derived targets. In allograft rejection or in graft-vs-host disease, however, major cellular targets are vascular and stromal cells, especially endothelium. Yet little is known about whether the same cell surface molecules are involved in the interactions of CTL with these cell types. We assessed the ability of mAb against effector or target cell structures to inhibit cytolysis of susceptible, cultured human vascular endothelium or dermal fibroblasts by a cloned human CTL line. Using mAb reactive with T3, T4, LFA-1, LFA-2, LFA-3, and HLA-DR, we found a qualitatively similar but quantitatively different pattern of inhibition of cytolysis as previously established for lymphoid targets by using the same CTL clone. These results have two implications: 1) the target cell structures recognized by CTL molecules such as T4, LFA-1 and LFA-2 are present on diverse cell types; and 2) the relative importance of such interactions may vary with target cell type. Furthermore, our studies provide several insights into the mechanisms of the interacting molecules. Our model system, and the use of pathophysiologically important target cells, may be useful for further analysis of CTL-mediated immune injury.
AB - Monoclonal antibodies (mAb) against cell surface structures have been used to identify several molecules involved in the interaction of human cytolytic T lymphocytes (CTL) with lymphoid and other bone marrow-derived targets. In allograft rejection or in graft-vs-host disease, however, major cellular targets are vascular and stromal cells, especially endothelium. Yet little is known about whether the same cell surface molecules are involved in the interactions of CTL with these cell types. We assessed the ability of mAb against effector or target cell structures to inhibit cytolysis of susceptible, cultured human vascular endothelium or dermal fibroblasts by a cloned human CTL line. Using mAb reactive with T3, T4, LFA-1, LFA-2, LFA-3, and HLA-DR, we found a qualitatively similar but quantitatively different pattern of inhibition of cytolysis as previously established for lymphoid targets by using the same CTL clone. These results have two implications: 1) the target cell structures recognized by CTL molecules such as T4, LFA-1 and LFA-2 are present on diverse cell types; and 2) the relative importance of such interactions may vary with target cell type. Furthermore, our studies provide several insights into the mechanisms of the interacting molecules. Our model system, and the use of pathophysiologically important target cells, may be useful for further analysis of CTL-mediated immune injury.
UR - http://www.scopus.com/inward/record.url?scp=0021222894&partnerID=8YFLogxK
M3 - Article
C2 - 6432903
AN - SCOPUS:0021222894
SN - 0022-1767
VL - 133
SP - 1878
EP - 1884
JO - Journal of Immunology
JF - Journal of Immunology
IS - 4
ER -