TY - JOUR
T1 - How rare and common risk variation jointly affect liability for autism spectrum disorder
AU - Klei, Lambertus
AU - McClain, Lora Lee
AU - Mahjani, Behrang
AU - Panayidou, Klea
AU - De Rubeis, Silvia
AU - Grahnat, Anna Carin Säll
AU - Karlsson, Gun
AU - Lu, Yangyi
AU - Melhem, Nadine
AU - Xu, Xinyi
AU - Reichenberg, Abraham
AU - Sandin, Sven
AU - Hultman, Christina M.
AU - Buxbaum, Joseph D.
AU - Roeder, Kathryn
AU - Devlin, Bernie
N1 - Funding Information:
This work was supported by National Institute of Mental Health Grants R37MH057881 (to B.D. and K.R.), R01MH097849 (to J.D.B.), U01MH111661 (to J.D.B.), and U01MH111658 (to B.D. and K.R.); a Simons Foundation grant (SF575547) to K.R., B.D., and Haiyuan Yu; and the Seaver Foundation (to J.D.B, S.D.R., B. M., and S.S.).
Funding Information:
We thank everyone who contributed to this study, both the research subjects and the investigators of the following studies: Simons Simplex Collection: We would like to thank the SSC principal investigators (A. L. Beaudet, R. Bernier, J. Constantino, E. H. Cook, Jr, E. Fombonne, D. Geschwind, D. E. Grice, A. Klin, D. H. Ledbetter, C. Lord, C. L. Martin, D. M. Martin, R. Maxim, J. Miles, O. Ousley, B. Peterson, J. Piggot, C. Saulnier, M. W. State, W. Stone, J. S. Sutcliffe, C. A. Walsh and E. Wijsman) and the coordinators and staff at the SSC clinical sites; the SFARI staff, in particular N. Volfovsky; D. B. Goldstein for contributing to the experimental design; and the Rutgers University Cell and DNA repository for accessing biomaterials. Electronic MEdical Records and Genomics Network: Group Health Cooperative/University of Washington—Funding support for Alzheimer's Disease Patient Registry (ADPR) and Adult Changes in Thought (ACT) study was provided by a U01 from the National Institute on Aging (Eric B. Larson, PI, U01AG006781). A gift from the 3M Corporation was used to expand the ACT cohort. DNA aliquots sufficient for GWAS from ADPR Probable AD cases, who had been enrolled in Genetic Differences in Alzheimer's Cases and Controls (Walter Kukull, PI, R01 AG007584) and obtained under that grant, were made available to eMERGE without charge. Funding support for genotyping, which was performed at Johns Hopkins University, was provided by the NIH (U01HG004438). Genome-wide association analyses were supported through a Cooperative Agreement from the National Human Genome Research Institute, U01HG004610 (Eric B. Larson, PI). Mayo Clinic—Samples and associated genotype and phenotype data used in this study were provided by the Mayo Clinic. Funding support for the Mayo Clinic was provided through a cooperative agreement with the National Human Genome Research Institute (NHGRI), Grant #: UOIHG004599; and by grant HL75794 from the National Heart Lung and Blood Institute (NHLBI). Funding support for genotyping, which was performed at The Broad Institute, was provided by the NIH (U01HG004424). Marshfield Clinic Research Foundation—Funding support for the Personalized Medicine Research Project (PMRP) was provided through a cooperative agreement (U01HG004608) with the National Human Genome Research Institute (NHGRI), with additional funding from the National Institute for General Medical Sciences (NIGMS) The samples used for PMRP analyses were obtained with funding from Marshfield Clinic, Health Resources Service Administration Office of Rural Health Policy grant number D1A RH00025, and Wisconsin Department of Commerce Technology Development Fund contract number TDF FYO10718. Funding support for genotyping, which was performed at Johns Hopkins University, was provided by the NIH (U01HG004438). Northwestern University—Samples and data used in this study were provided by the NUgene Project ( www.nugene.org ). Funding support for the NUgene Project was provided by the Northwestern University’s Center for Genetic Medicine, Northwestern University, and Northwestern Memorial Hospital. Assistance with phenotype harmonization was provided by the eMERGE Coordinating Center (Grant number U01HG04603). This study was funded through the NIH, NHGRI eMERGE Network (U01HG004609). Funding support for genotyping, which was performed at The Broad Institute, was provided by the NIH (U01HG004424). Vanderbilt University—Funding support for the Vanderbilt Genome-Electronic Records (VGER) project was provided through a cooperative agreement (U01HG004603) with the National Human Genome Research Institute (NHGRI) with additional funding from the National Institute of General Medical Sciences (NIGMS). The dataset and samples used for the VGER analyses were obtained from Vanderbilt University Medical Center's BioVU, which is supported by institutional funding and by the Vanderbilt CTSA grant UL1RR024975 from NCRR/NIH. Funding support for genotyping, which was performed at The Broad Institute, was provided by the NIH (U01HG004424). Assistance with phenotype harmonization and genotype data cleaning was provided by the eMERGE Administrative Coordinating Center (U01HG004603) and the National Center for Biotechnology Information (NCBI). The datasets used for the analyses described in this manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000360.v3.p1.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Background: Genetic studies have implicated rare and common variations in liability for autism spectrum disorder (ASD). Of the discovered risk variants, those rare in the population invariably have large impact on liability, while common variants have small effects. Yet, collectively, common risk variants account for the majority of population-level variability. How these rare and common risk variants jointly affect liability for individuals requires further study. Methods: To explore how common and rare variants jointly affect liability, we assessed two cohorts of ASD families characterized for rare and common genetic variations (Simons Simplex Collection and Population-Based Autism Genetics and Environment Study). We analyzed data from 3011 affected subjects, as well as two cohorts of unaffected individuals characterized for common genetic variation: 3011 subjects matched for ancestry to ASD subjects and 11,950 subjects for estimating allele frequencies. We used genetic scores, which assessed the relative burden of common genetic variation affecting risk of ASD (henceforth “burden”), and determined how this burden was distributed among three subpopulations: ASD subjects who carry a potentially damaging variant implicated in risk of ASD (“PDV carriers”); ASD subjects who do not (“non-carriers”); and unaffected subjects who are assumed to be non-carriers. Results: Burden harbored by ASD subjects is stochastically greater than that harbored by control subjects. For PDV carriers, their average burden is intermediate between non-carrier ASD and control subjects. Both carrier and non-carrier ASD subjects have greater burden, on average, than control subjects. The effects of common and rare variants likely combine additively to determine individual-level liability. Limitations: Only 305 ASD subjects were known PDV carriers. This relatively small subpopulation limits this study to characterizing general patterns of burden, as opposed to effects of specific PDVs or genes. Also, a small fraction of subjects that are categorized as non-carriers could be PDV carriers. Conclusions: Liability arising from common and rare risk variations likely combines additively to determine risk of any individual diagnosed with ASD. On average, ASD subjects carry a substantial burden of common risk variation, even if they also carry a rare PDV affecting risk.
AB - Background: Genetic studies have implicated rare and common variations in liability for autism spectrum disorder (ASD). Of the discovered risk variants, those rare in the population invariably have large impact on liability, while common variants have small effects. Yet, collectively, common risk variants account for the majority of population-level variability. How these rare and common risk variants jointly affect liability for individuals requires further study. Methods: To explore how common and rare variants jointly affect liability, we assessed two cohorts of ASD families characterized for rare and common genetic variations (Simons Simplex Collection and Population-Based Autism Genetics and Environment Study). We analyzed data from 3011 affected subjects, as well as two cohorts of unaffected individuals characterized for common genetic variation: 3011 subjects matched for ancestry to ASD subjects and 11,950 subjects for estimating allele frequencies. We used genetic scores, which assessed the relative burden of common genetic variation affecting risk of ASD (henceforth “burden”), and determined how this burden was distributed among three subpopulations: ASD subjects who carry a potentially damaging variant implicated in risk of ASD (“PDV carriers”); ASD subjects who do not (“non-carriers”); and unaffected subjects who are assumed to be non-carriers. Results: Burden harbored by ASD subjects is stochastically greater than that harbored by control subjects. For PDV carriers, their average burden is intermediate between non-carrier ASD and control subjects. Both carrier and non-carrier ASD subjects have greater burden, on average, than control subjects. The effects of common and rare variants likely combine additively to determine individual-level liability. Limitations: Only 305 ASD subjects were known PDV carriers. This relatively small subpopulation limits this study to characterizing general patterns of burden, as opposed to effects of specific PDVs or genes. Also, a small fraction of subjects that are categorized as non-carriers could be PDV carriers. Conclusions: Liability arising from common and rare risk variations likely combines additively to determine risk of any individual diagnosed with ASD. On average, ASD subjects carry a substantial burden of common risk variation, even if they also carry a rare PDV affecting risk.
KW - Autism spectrum disorder
KW - De novo mutation
KW - Genomic-Best Linear Unbiased Prediction (G-BLUP)
KW - Liability
KW - Polygenic risk score
UR - http://www.scopus.com/inward/record.url?scp=85116438225&partnerID=8YFLogxK
U2 - 10.1186/s13229-021-00466-2
DO - 10.1186/s13229-021-00466-2
M3 - Article
C2 - 34615521
AN - SCOPUS:85116438225
VL - 12
JO - Molecular Autism
JF - Molecular Autism
SN - 2040-2392
IS - 1
M1 - 66
ER -