Abstract
Bioengineered heparin (BEH) offers a potential alternative for the preparation of a safer pharmacological heparin. Construction of in-process control assays for tracking each enzymatic step during bioengineered heparin synthesis remains a challenge. Here, we report a high-throughput sensing platform based on enzyme-linked immunosorbent assay (ELISA) and enzymatic signal amplification that allows the rapid and accurate monitoring of the 3-OST sulfonation in BEH synthesis process. The anticoagulant activity of target BEH was measured to reflect the degree of sulfonation by testing its competitive antithrombin (AT) binding ability. BEH samples with different sulfonation degrees show different AT protein binding capacity and thus changes the UV response to a different extent. This BEH-induced signal can be conveniently and sensitively monitored by the plate sensing system, which benefits from its high sensitivity brought in by the enzymatic signal amplification. Furthermore, modification convenience and mechanical robustness also ensure the stability of the test platform. This proposed strategy exhibits excellent analytical performance in both BEH activity analysis and 3-OST sulfonation evaluation. The simple and sensitive plate system shows great potential in developing on-chip, high-throughput methods for fundamental biochemical process research, drug discovery, and clinic diagnostics.
Original language | English |
---|---|
Article number | 113419 |
Journal | Analytical Biochemistry |
Volume | 586 |
DOIs | |
State | Published - 1 Dec 2019 |
Externally published | Yes |
Keywords
- 3-OST sulfonation
- Antithrombin binding
- Bioengineered heparin
- ELISA