High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage

Yunjia Lai, Jeremy P. Koelmel, Douglas I. Walker, Elliott J. Price, Stefano Papazian, Katherine E. Manz, Delia Castilla-Fernández, John A. Bowden, Vladimir Nikiforov, Arthur David, Vincent Bessonneau, Bashar Amer, Suresh Seethapathy, Xin Hu, Elizabeth Z. Lin, Akrem Jbebli, Brooklynn R. McNeil, Dinesh Barupal, Marina Cerasa, Hongyu XieVrinda Kalia, Renu Nandakumar, Randolph Singh, Zhenyu Tian, Peng Gao, Yujia Zhao, Jean Froment, Pawel Rostkowski, Saurabh Dubey, Kateřina Coufalíková, Hana Seličová, Helge Hecht, Sheng Liu, Hanisha H. Udhani, Sophie Restituito, Kam Meng Tchou-Wong, Kun Lu, Jonathan W. Martin, Benedikt Warth, Krystal J. Godri Pollitt, Jana Klánová, Oliver Fiehn, Thomas O. Metz, Kurt D. Pennell, Dean P. Jones, Gary W. Miller

Research output: Contribution to journalReview articlepeer-review

17 Scopus citations

Abstract

In the modern “omics” era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.

Original languageEnglish
Pages (from-to)12784-12822
Number of pages39
JournalEnvironmental Science and Technology
Volume58
Issue number29
DOIs
StatePublished - 23 Jul 2024

Keywords

  • chemical space
  • chromatography
  • environmental exposures
  • exposome
  • high-resolution mass spectrometry
  • metabolomics
  • non-targeted analysis
  • toxicants

Fingerprint

Dive into the research topics of 'High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage'. Together they form a unique fingerprint.

Cite this