Harmine and exendin-4 combination therapy safely expands human β cell mass in vivo in a mouse xenograft system

Carolina Rosselot, Yansui Li, Peng Wang, Alexandra Alvarsson, Kara Beliard, Geming Lu, Randy Kang, Rosemary Li, Hongtao Liu, Virginia Gillespie, Nikolaos Tzavaras, Kunal Kumar, Robert J. DeVita, Andrew F. Stewart, Sarah A. Stanley, Adolfo Garcia-Ocaña

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Five hundred thirty-seven million people globally suffer from diabetes. Insulin-producing β cells are reduced in number in most people with diabetes, but most individuals still have some residual β cells. However, none of the many diabetes drugs in common use increases human β cell numbers. Recently, small molecules that inhibit dual tyrosine-regulated kinase 1A (DYRK1A) have been shown to induce immunohistochemical markers of human β cell replication, and this is enhanced by drugs that stimulate the glucagon-like peptide 1 (GLP1) receptor (GLP1R) on β cells. However, it remains to be demonstrated whether these immunohistochemical findings translate into an actual increase in human β cell numbers in vivo. It is also unknown whether DYRK1A inhibitors together with GLP1R agonists (GLP1RAs) affect human β cell survival. Here, using an optimized immunolabeling-enabled three-dimensional imaging of solvent-cleared organs (iDISCO+) protocol in mouse kidneys bearing human islet grafts, we demonstrate that combination of a DYRK1A inhibitor with exendin-4 increases actual human β cell mass in vivo by a mean of four- to sevenfold in diabetic and nondiabetic mice over 3 months and reverses diabetes, without alteration in human α cell mass. The augmentation in human β cell mass occurred through mechanisms that included enhanced human β cell proliferation, function, and survival. The increase in human β cell survival was mediated, in part, by the islet prohormone VGF. Together, these findings demonstrate the therapeutic potential and favorable preclinical safety profile of the DYRK1A inhibitor–GLP1RA combination for diabetes treatment.

Original languageEnglish
Article numbereadg3456
JournalScience Translational Medicine
Volume16
Issue number755
DOIs
StatePublished - 10 Jul 2024

Fingerprint

Dive into the research topics of 'Harmine and exendin-4 combination therapy safely expands human β cell mass in vivo in a mouse xenograft system'. Together they form a unique fingerprint.

Cite this