TY - JOUR
T1 - Graph Neural Prompting with Large Language Models
AU - Tian, Yijun
AU - Song, Huan
AU - Wang, Zichen
AU - Wang, Haozhu
AU - Hu, Ziqing
AU - Wang, Fang
AU - Chawla, Nitesh V.
AU - Xu, Panpan
N1 - Publisher Copyright:
© 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2024/3/25
Y1 - 2024/3/25
N2 - Large language models (LLMs) have shown remarkable generalization capability with exceptional performance in various language modeling tasks. However, they still exhibit inherent limitations in precisely capturing and returning grounded knowledge. While existing work has explored utilizing knowledge graphs (KGs) to enhance language modeling via joint training and customized model architectures, applying this to LLMs is problematic owing to their large number of parameters and high computational cost. Therefore, how to enhance pre-trained LLMs using grounded knowledge, e.g., retrieval-augmented generation, remains an open question. In this work, we propose Graph Neural Prompting (GNP), a novel plug-and-play method to assist pre-trained LLMs in learning beneficial knowledge from KGs. GNP encompasses various designs, including a standard graph neural network encoder, a cross-modality pooling module, a domain projector, and a self-supervised link prediction objective. Extensive experiments on multiple datasets demonstrate the superiority of GNP on both commonsense and biomedical reasoning tasks across different LLM sizes and settings. Code is available at https://github.com/meettyj/GNP.
AB - Large language models (LLMs) have shown remarkable generalization capability with exceptional performance in various language modeling tasks. However, they still exhibit inherent limitations in precisely capturing and returning grounded knowledge. While existing work has explored utilizing knowledge graphs (KGs) to enhance language modeling via joint training and customized model architectures, applying this to LLMs is problematic owing to their large number of parameters and high computational cost. Therefore, how to enhance pre-trained LLMs using grounded knowledge, e.g., retrieval-augmented generation, remains an open question. In this work, we propose Graph Neural Prompting (GNP), a novel plug-and-play method to assist pre-trained LLMs in learning beneficial knowledge from KGs. GNP encompasses various designs, including a standard graph neural network encoder, a cross-modality pooling module, a domain projector, and a self-supervised link prediction objective. Extensive experiments on multiple datasets demonstrate the superiority of GNP on both commonsense and biomedical reasoning tasks across different LLM sizes and settings. Code is available at https://github.com/meettyj/GNP.
UR - http://www.scopus.com/inward/record.url?scp=85185803457&partnerID=8YFLogxK
U2 - 10.1609/aaai.v38i17.29875
DO - 10.1609/aaai.v38i17.29875
M3 - Conference article
AN - SCOPUS:85185803457
SN - 2159-5399
VL - 38
SP - 19080
EP - 19088
JO - Proceedings of the AAAI Conference on Artificial Intelligence
JF - Proceedings of the AAAI Conference on Artificial Intelligence
IS - 17
T2 - 38th AAAI Conference on Artificial Intelligence, AAAI 2024
Y2 - 20 February 2024 through 27 February 2024
ER -