TY - GEN
T1 - Graph-based pancreatic islet segmentation for early type 2 diabetes mellitus on histopathological tissue
AU - Floros, Xenofon
AU - Fuchs, Thomas J.
AU - Rechsteiner, Markus P.
AU - Spinas, Giatgen
AU - Moch, Holger
AU - Buhmann, Joachim M.
PY - 2009
Y1 - 2009
N2 - It is estimated that in 2010 more than 220 million people will be affected by type 2 diabetes mellitus (T2DM). Early evidence indicates that specific markers for alpha and beta cells in pancreatic islets of Langerhans can be used for early T2DM diagnosis. Currently, the analysis of such histological tissues is manually performed by trained pathologists using a light microscope. To objectify classification results and to reduce the processing time of histological tissues, an automated computational pathology framework for segmentation of pancreatic islets from histopathological fluorescence images is proposed. Due to high variability in the staining intensities for alpha and beta cells, classical medical imaging approaches fail in this scenario. The main contribution of this paper consists of a novel graph-based segmentation approach based on cell nuclei detection with randomized tree ensembles. The algorithm is trained via a cross validation scheme on a ground truth set of islet images manually segmented by 4 expert pathologists. Test errors obtained from the cross validation procedure demonstrate that the graph-based computational pathology analysis proposed is performing competitively to the expert pathologists while outperforming a baseline morphological approach.
AB - It is estimated that in 2010 more than 220 million people will be affected by type 2 diabetes mellitus (T2DM). Early evidence indicates that specific markers for alpha and beta cells in pancreatic islets of Langerhans can be used for early T2DM diagnosis. Currently, the analysis of such histological tissues is manually performed by trained pathologists using a light microscope. To objectify classification results and to reduce the processing time of histological tissues, an automated computational pathology framework for segmentation of pancreatic islets from histopathological fluorescence images is proposed. Due to high variability in the staining intensities for alpha and beta cells, classical medical imaging approaches fail in this scenario. The main contribution of this paper consists of a novel graph-based segmentation approach based on cell nuclei detection with randomized tree ensembles. The algorithm is trained via a cross validation scheme on a ground truth set of islet images manually segmented by 4 expert pathologists. Test errors obtained from the cross validation procedure demonstrate that the graph-based computational pathology analysis proposed is performing competitively to the expert pathologists while outperforming a baseline morphological approach.
UR - http://www.scopus.com/inward/record.url?scp=77952260206&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-04271-3_77
DO - 10.1007/978-3-642-04271-3_77
M3 - Conference contribution
C2 - 20426165
AN - SCOPUS:77952260206
SN - 3642042708
SN - 9783642042706
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 633
EP - 640
BT - Medical Image Computing and Computer-Assisted Intervention - MICCAI2009 - 12th International Conference, Proceedings
T2 - 12th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2009
Y2 - 20 September 2009 through 24 September 2009
ER -