Abstract
Fear is an important emotional reaction in response to threatening stimuli and is important for survival. However, when fear occurs in inappropriate circumstances, it can lead to pathological conditions including an increased vulnerability for developing anxiety disorders such as posttraumatic stress disorder (PTSD). Patients with PTSD generalize fear to contexts or to environments that are not associated with the trauma. We sought to explore if increasing the level of dissimilarity relative to the context in which mice learn fear results in changes in the level of fear responding to the new context. We also determined with this procedure if the number of cells expressing the immediate early gene cfos changes with the corresponding level of expressed fear within brain regions known to be important in modulating fear, including the basolateral amygdala (BLA) and hippocampus. Our results indicate that mice that were tested in increasingly different contexts showed significantly different levels of fear responses. Freezing level was higher in the context most similar to the acquisition context than the one that was highly different. The level of cfos within the BLA, but not hippocampus, was also significantly different between the test contexts, with higher levels in the somewhat similar compared with the most different context. Overall, these results highlight the BLA as a critical region in the node of fear circuitry for modulating fear generalization.
Original language | English |
---|---|
Pages (from-to) | 1393-1399 |
Number of pages | 7 |
Journal | Journal of Neuroscience Research |
Volume | 94 |
Issue number | 12 |
DOIs | |
State | Published - 1 Dec 2016 |
Externally published | Yes |
Keywords
- amygdala
- fear conditioning
- fear generalization