TY - JOUR
T1 - Glucagon-like peptide 1 and its cleavage products are renoprotective in murine diabetic nephropathy
AU - Moellmann, Julia
AU - Klinkhammer, Barbara Mara
AU - Onstein, Julia
AU - Stöhr, Robert
AU - Jankowski, Vera
AU - Jankowski, Joachim
AU - Lebherz, Corinna
AU - Tacke, Frank
AU - Marx, Nikolaus
AU - Boor, Peter
AU - Lehrke, Michael
N1 - Publisher Copyright:
© 2018 by the American Diabetes Association.
PY - 2018/11/1
Y1 - 2018/11/1
N2 - Incretin-based therapies, including glucagon-like peptide 1 (GLP-1) receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors, are potent glucose-lowering drugs. Still, only GLP-1 receptor agonists with close peptide homology to GLP-1 (liraglutide and semaglutide) but neither exenatide-based GLP-1 receptor agonists nor DPP-4 inhibitors were found to reduce cardiovascular events. This different response might relate to GLP-1 receptor-independent actions of GLP-1 caused by cleavage products only liberated by GLP-1 receptor agonists with close peptide structure to GLP-1. To test this hypothesis, we directly compared metabolic, renal, and cardiac effects of GLP-1 and its cleavage products in diabetic db/db mice. Using an adeno-associated viral vector system, we overexpressed DPP-4-resistant GLP-1 (7-37 Mut8) and the two GLP-1 cleavage products, GLP-1 (9-37) and GLP-1 (28-37), in diabetic db/db mice. Only GLP-1 (7-37 Mut8), but none of the cleavage products, significantly improved glucose metabolism. Still, all GLP-1 constructs significantly reduced tubulointerstitial renal damage, lowered expression of the tubular injury markers, and attenuated renal accumulation of macrophages and T cells. This was associated with a systemic immunomodulatory effect, which was similarly found in an acute renal ischemia/reperfusion injury model. In conclusion, GLP-1 cleavage products proved sufficient to mediate organ-protective effects, which might help to explain differences between GLP-1 receptor agonists.
AB - Incretin-based therapies, including glucagon-like peptide 1 (GLP-1) receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors, are potent glucose-lowering drugs. Still, only GLP-1 receptor agonists with close peptide homology to GLP-1 (liraglutide and semaglutide) but neither exenatide-based GLP-1 receptor agonists nor DPP-4 inhibitors were found to reduce cardiovascular events. This different response might relate to GLP-1 receptor-independent actions of GLP-1 caused by cleavage products only liberated by GLP-1 receptor agonists with close peptide structure to GLP-1. To test this hypothesis, we directly compared metabolic, renal, and cardiac effects of GLP-1 and its cleavage products in diabetic db/db mice. Using an adeno-associated viral vector system, we overexpressed DPP-4-resistant GLP-1 (7-37 Mut8) and the two GLP-1 cleavage products, GLP-1 (9-37) and GLP-1 (28-37), in diabetic db/db mice. Only GLP-1 (7-37 Mut8), but none of the cleavage products, significantly improved glucose metabolism. Still, all GLP-1 constructs significantly reduced tubulointerstitial renal damage, lowered expression of the tubular injury markers, and attenuated renal accumulation of macrophages and T cells. This was associated with a systemic immunomodulatory effect, which was similarly found in an acute renal ischemia/reperfusion injury model. In conclusion, GLP-1 cleavage products proved sufficient to mediate organ-protective effects, which might help to explain differences between GLP-1 receptor agonists.
UR - http://www.scopus.com/inward/record.url?scp=85053304177&partnerID=8YFLogxK
U2 - 10.2337/db17-1212
DO - 10.2337/db17-1212
M3 - Article
C2 - 30104246
AN - SCOPUS:85053304177
SN - 0012-1797
VL - 67
SP - 2410
EP - 2419
JO - Diabetes
JF - Diabetes
IS - 11
ER -