Global mapping of the inc-human interactome reveals that retromer restricts chlamydia infection

Kathleen M. Mirrashidi, Cherilyn A. Elwell, Erik Verschueren, Jeffrey R. Johnson, Andrew Frando, John Von Dollen, Oren Rosenberg, Natali Gulbahce, Gwendolyn Jang, Tasha Johnson, Stefanie Jager, Anusha M. Gopalakrishnan, Jessica Sherry, Joe Dan Dunn, Andrew Olive, Bennett Penn, Michael Shales, Jeffery S. Cox, Michael N. Starnbach, Isabelle DerreRaphael Valdivia, Nevan J. Krogan, Joanne Engel

Research output: Contribution to journalArticlepeer-review

153 Scopus citations

Abstract

Chlamydia trachomatis is a leading cause of genital and ocular infections for which no vaccine exists. Upon entry into host cells, C. trachomatis resides within a membrane-bound compartmentâ€"the inclusionâ€" and secretes inclusion membrane proteins (Incs) that are thought to modulate the host-bacterium interface. To expand our understanding of Inc function(s), we subjected putative C. trachomatis Incs to affinity purification-mass spectroscopy (APMS). We identified Inc-human interactions for 38/58 Incs with enrichment in host processes consistent with Chlamydia’s intracellular life cycle. There is significant overlap between Inc targets and viral proteins, suggesting common pathogenic mechanisms among obligate intracellular microbes. IncE binds to sorting nexins (SNXs) 5/6, components of the retromer, which relocalizes SNX5/6 to the inclusion membrane and augments inclusion membrane tubulation. Depletion of retromer components enhances progeny production, revealing that retromer restricts Chlamydia infection. This study demonstrates the value of proteomics in unveiling hostpathogen interactions in genetically challenging microbes.

Original languageEnglish
Pages (from-to)109-121
Number of pages13
JournalCell Host and Microbe
Volume18
Issue number1
DOIs
StatePublished - 2015
Externally publishedYes

Fingerprint

Dive into the research topics of 'Global mapping of the inc-human interactome reveals that retromer restricts chlamydia infection'. Together they form a unique fingerprint.

Cite this