TY - JOUR
T1 - Genomics and proteomics in liver fibrosis and cirrhosis
AU - Hannivoort, Rebekka A.
AU - Hernandez-Gea, Virginia
AU - Friedman, Scott L.
N1 - Funding Information:
RH was funded by the Graduate School for Drug Exploration (GUIDE), and the Stichting Nicolaas Muleriusfonds, Groningen, the Netherlands. SF and VH-G are supported by NIH Grants DK37340, DK56621 and AA017067.
PY - 2012/1/3
Y1 - 2012/1/3
N2 - Genomics and proteomics have become increasingly important in biomedical science in the past decade, as they provide an opportunity for hypothesis-free experiments that can yield major insights not previously foreseen when scientific and clinical questions are based only on hypothesis-driven approaches. Use of these tools, therefore, opens new avenues for uncovering physiological and pathological pathways. Liver fibrosis is a complex disease provoked by a range of chronic injuries to the liver, among which are viral hepatitis, (non-) alcoholic steatohepatitis and autoimmune disorders. Some chronic liver patients will never develop fibrosis or cirrhosis, whereas others rapidly progress towards cirrhosis in a few years. This variety can be caused by disease-related factors (for example, viral genotype) or host-factors (genetic/epigenetic). It is vital to establish accurate tools to identify those patients at highest risk for disease severity or progression in order to determine who are in need of immediate therapies. Moreover, there is an urgent imperative to identify non-invasive markers that can accurately distinguish mild and intermediate stages of fibrosis. Ideally, biomarkers can be used to predict disease progression and treatment response, but these studies will take many years due to the requirement for lengthy follow-up periods to assess outcomes. Current genomic and proteomic research provides many candidate biomarkers, but independent validation of these biomarkers is lacking, and reproducibility is still a key concern. Thus, great opportunities and challenges lie ahead in the field of genomics and proteomics, which, if successful, could transform the diagnosis and treatment of chronic fibrosing liver diseases.
AB - Genomics and proteomics have become increasingly important in biomedical science in the past decade, as they provide an opportunity for hypothesis-free experiments that can yield major insights not previously foreseen when scientific and clinical questions are based only on hypothesis-driven approaches. Use of these tools, therefore, opens new avenues for uncovering physiological and pathological pathways. Liver fibrosis is a complex disease provoked by a range of chronic injuries to the liver, among which are viral hepatitis, (non-) alcoholic steatohepatitis and autoimmune disorders. Some chronic liver patients will never develop fibrosis or cirrhosis, whereas others rapidly progress towards cirrhosis in a few years. This variety can be caused by disease-related factors (for example, viral genotype) or host-factors (genetic/epigenetic). It is vital to establish accurate tools to identify those patients at highest risk for disease severity or progression in order to determine who are in need of immediate therapies. Moreover, there is an urgent imperative to identify non-invasive markers that can accurately distinguish mild and intermediate stages of fibrosis. Ideally, biomarkers can be used to predict disease progression and treatment response, but these studies will take many years due to the requirement for lengthy follow-up periods to assess outcomes. Current genomic and proteomic research provides many candidate biomarkers, but independent validation of these biomarkers is lacking, and reproducibility is still a key concern. Thus, great opportunities and challenges lie ahead in the field of genomics and proteomics, which, if successful, could transform the diagnosis and treatment of chronic fibrosing liver diseases.
KW - Cirrhosis
KW - Genomics
KW - Liver fibrosis
KW - Mass spectrometry
KW - Microarray
KW - Proteomics
UR - http://www.scopus.com/inward/record.url?scp=84855846606&partnerID=8YFLogxK
U2 - 10.1186/1755-1536-5-1
DO - 10.1186/1755-1536-5-1
M3 - Review article
AN - SCOPUS:84855846606
SN - 1755-1536
VL - 5
JO - Fibrogenesis and Tissue Repair
JF - Fibrogenesis and Tissue Repair
IS - 1
M1 - 1
ER -