TY - JOUR
T1 - Genome-wide identification and characterization of replication origins by deep sequencing
AU - Xu, Jia
AU - Yanagisawa, Yoshimi
AU - Tsankov, Alexander M.
AU - Hart, Christopher
AU - Aoki, Keita
AU - Kommajosyula, Naveen
AU - Steinmann, Kathleen E.
AU - Bochicchio, James
AU - Russ, Carsten
AU - Regev, Aviv
AU - Rando, Oliver J.
AU - Nusbaum, Chad
AU - Niki, Hironori
AU - Milos, Patrice
AU - Weng, Zhiping
AU - Rhind, Nicholas
N1 - Funding Information:
This work was supported by an American Cancer Society Research Scholar Grant to NR.
PY - 2012/4/24
Y1 - 2012/4/24
N2 - Background: DNA replication initiates at distinct origins in eukaryotic genomes, but the genomic features that define these sites are not well understood.Results: We have taken a combined experimental and bioinformatic approach to identify and characterize origins of replication in three distantly related fission yeasts: Schizosaccharomyces pombe, Schizosaccharomyces octosporus and Schizosaccharomyces japonicus. Using single-molecule deep sequencing to construct amplification-free high-resolution replication profiles, we located origins and identified sequence motifs that predict origin function. We then mapped nucleosome occupancy by deep sequencing of mononucleosomal DNA from the corresponding species, finding that origins tend to occupy nucleosome-depleted regions.Conclusions: The sequences that specify origins are evolutionarily plastic, with low complexity nucleosome-excluding sequences functioning in S. pombe and S. octosporus, and binding sites for trans-acting nucleosome-excluding proteins functioning in S. japonicus. Furthermore, chromosome-scale variation in replication timing is conserved independently of origin location and via a mechanism distinct from known heterochromatic effects on origin function. These results are consistent with a model in which origins are simply the nucleosome-depleted regions of the genome with the highest affinity for the origin recognition complex. This approach provides a general strategy for understanding the mechanisms that define DNA replication origins in eukaryotes.
AB - Background: DNA replication initiates at distinct origins in eukaryotic genomes, but the genomic features that define these sites are not well understood.Results: We have taken a combined experimental and bioinformatic approach to identify and characterize origins of replication in three distantly related fission yeasts: Schizosaccharomyces pombe, Schizosaccharomyces octosporus and Schizosaccharomyces japonicus. Using single-molecule deep sequencing to construct amplification-free high-resolution replication profiles, we located origins and identified sequence motifs that predict origin function. We then mapped nucleosome occupancy by deep sequencing of mononucleosomal DNA from the corresponding species, finding that origins tend to occupy nucleosome-depleted regions.Conclusions: The sequences that specify origins are evolutionarily plastic, with low complexity nucleosome-excluding sequences functioning in S. pombe and S. octosporus, and binding sites for trans-acting nucleosome-excluding proteins functioning in S. japonicus. Furthermore, chromosome-scale variation in replication timing is conserved independently of origin location and via a mechanism distinct from known heterochromatic effects on origin function. These results are consistent with a model in which origins are simply the nucleosome-depleted regions of the genome with the highest affinity for the origin recognition complex. This approach provides a general strategy for understanding the mechanisms that define DNA replication origins in eukaryotes.
UR - http://www.scopus.com/inward/record.url?scp=84859927986&partnerID=8YFLogxK
U2 - 10.1186/gb-2012-13-4-r27
DO - 10.1186/gb-2012-13-4-r27
M3 - Article
C2 - 22839576
AN - SCOPUS:84859927986
SN - 1474-7596
VL - 13
JO - Genome Biology
JF - Genome Biology
IS - 4
M1 - R27
ER -