TY - JOUR
T1 - Genetic variance contributes to dopamine and opioid receptor antagonist-induced inhibition of intralipid (fat) intake in inbred and outbred mouse strains
AU - Dym, Cheryl T.
AU - Bae, Veronica S.
AU - Kraft, Tamar
AU - Yakubov, Yakov
AU - Winn, Amanda
AU - Sclafani, Anthony
AU - Bodnar, Richard J.
N1 - Funding Information:
This research was supported in part by National Institute of Diabetes and Digestive and Kidney Diseases Grant DK07161 to AS and RJB; CD is a CUNY Doctoral Chancellor's Fellow. We thank the excellent suggestions of two anonymous reviewers in the final preparation of this manuscript.
PY - 2010/2/26
Y1 - 2010/2/26
N2 - Preference for and intake of solid and emulsified fat (intralipid) solutions vary across different mouse strains. Fat intake in rodents is inhibited by dopamine and opioid receptor antagonists, but any variation in these responses as a function of genetic background is unknown. Therefore, the present study compared the ability of dopamine D1-like (SCH23390) and general opioid (naltrexone) receptor antagonism to alter intake of fat emulsions (intralipid) in mice. Two-hour intakes of 5% intralipid were measured (5-120 min) in seven inbred (BALB/c, C57BL/6, C57BL/10, DBA/2, SJL, SWR, 129P3) and one outbred (CD-1) mouse strains following treatment with vehicle, SCH23390 (50-1600 nmol/kg, ip) and naltrexone (0.001-5 mg/kg, sc). SCH23390 significantly, dose-dependently and differentially reduced intralipid intake at all five (DBA/2, SWR, CD-1), four (SJL, C57BL/6), three (129P3) and one (C57BL/10) of the doses tested, but failed to affect intralipid intake in BALB/c mice. Naltrexone significantly, dose-dependently and differentially reduced intralipid intake at all four (DBA/2), three (SWR, SJL), two (CD-1, C57BL/10) and one (C57BL/6, 129P3) of the doses tested, and also failed to affect intralipid intake in BALB/cJ mice. SCH23390 and naltrexone were respectively 13.3-fold and 9.3-fold more potent in inhibiting intralipid intake in the most sensitive (DBA/2) relative to the least sensitive (BALB/c) mouse strains. A strong positive relationship (r = 0.91) was observed for the abilities of SCH23390 and naltrexone to inhibit intralipid intake across strains. These findings indicate that dopaminergic and opioid signaling mechanisms differentially control intralipid intake across different mouse strains, suggesting important genetic and pharmacological interactions in the short-term control of rewarding and post-ingestive consequences of fat intake.
AB - Preference for and intake of solid and emulsified fat (intralipid) solutions vary across different mouse strains. Fat intake in rodents is inhibited by dopamine and opioid receptor antagonists, but any variation in these responses as a function of genetic background is unknown. Therefore, the present study compared the ability of dopamine D1-like (SCH23390) and general opioid (naltrexone) receptor antagonism to alter intake of fat emulsions (intralipid) in mice. Two-hour intakes of 5% intralipid were measured (5-120 min) in seven inbred (BALB/c, C57BL/6, C57BL/10, DBA/2, SJL, SWR, 129P3) and one outbred (CD-1) mouse strains following treatment with vehicle, SCH23390 (50-1600 nmol/kg, ip) and naltrexone (0.001-5 mg/kg, sc). SCH23390 significantly, dose-dependently and differentially reduced intralipid intake at all five (DBA/2, SWR, CD-1), four (SJL, C57BL/6), three (129P3) and one (C57BL/10) of the doses tested, but failed to affect intralipid intake in BALB/c mice. Naltrexone significantly, dose-dependently and differentially reduced intralipid intake at all four (DBA/2), three (SWR, SJL), two (CD-1, C57BL/10) and one (C57BL/6, 129P3) of the doses tested, and also failed to affect intralipid intake in BALB/cJ mice. SCH23390 and naltrexone were respectively 13.3-fold and 9.3-fold more potent in inhibiting intralipid intake in the most sensitive (DBA/2) relative to the least sensitive (BALB/c) mouse strains. A strong positive relationship (r = 0.91) was observed for the abilities of SCH23390 and naltrexone to inhibit intralipid intake across strains. These findings indicate that dopaminergic and opioid signaling mechanisms differentially control intralipid intake across different mouse strains, suggesting important genetic and pharmacological interactions in the short-term control of rewarding and post-ingestive consequences of fat intake.
KW - Dopamine D1 receptor
KW - Fat Intake
KW - Naltrexone
KW - Opioid receptors
KW - SCH23390
UR - http://www.scopus.com/inward/record.url?scp=75549086654&partnerID=8YFLogxK
U2 - 10.1016/j.brainres.2009.12.021
DO - 10.1016/j.brainres.2009.12.021
M3 - Article
C2 - 20026311
AN - SCOPUS:75549086654
SN - 0006-8993
VL - 1316
SP - 51
EP - 61
JO - Brain Research
JF - Brain Research
ER -