Functional interaction of Rpb1 and Spt5 C-terminal domains in co-transcriptional histone modification

Jean Mbogning, Viviane Pagé, Jillian Burston, Emily Schwenger, Robert P. Fisher, Beate Schwer, Stewart Shuman, Jason C. Tanny

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Transcription by RNA polymerase II (RNAPII) is accompanied by a conserved pattern of histone modifications that plays important roles in regulating gene expression. The establishment of this pattern requires phosphorylation of both Rpb1 (the largest RNAPII subunit) and the elongation factor Spt5 on their respective C-terminal domains (CTDs). Here we interrogated the roles of individual Rpb1 and Spt5 CTD phospho-sites in directing co-transcriptional histone modifications in the fission yeast Schizosaccharomyces pombe. Steady-state levels of methylation at histone H3 lysines 4 (H3K4me) and 36 (H3K36me) were sensitive to multiple mutations of the Rpb1 CTD repeat motif (Y1S2P3T4S5P6S7). Ablation of the Spt5 CTD phospho-site Thr1 reduced H3K4me levels but had minimal effects on H3K36me. Nonetheless, Spt5 CTD mutations potentiated the effects of Rpb1 CTD mutations on H3K36me, suggesting overlapping functions. Phosphorylation of Rpb1 Ser2 by the Cdk12 orthologue Lsk1 positively regulated H3K36me but negatively regulated H3K4me. H3K36me and histone H2B monoubiquitylation required Rpb1 Ser5 but were maintained upon inactivation of Mcs6/Cdk7, the major kinase for Rpb1 Ser5 in vivo, implicating another Ser5 kinase in these regulatory pathways. Our results elaborate the CTD 'code' for co-transcriptional histone modifications.

Original languageEnglish
Pages (from-to)9766-9775
Number of pages10
JournalNucleic Acids Research
Volume43
Issue number20
DOIs
StatePublished - 9 Aug 2015

Fingerprint

Dive into the research topics of 'Functional interaction of Rpb1 and Spt5 C-terminal domains in co-transcriptional histone modification'. Together they form a unique fingerprint.

Cite this