TY - JOUR
T1 - From “directed differentiation” to “neuronal induction”
T2 - Modeling neuropsychiatric disease
AU - Ho, Seok Man
AU - Topol, Aaron
AU - Brennand, Kristen J.
N1 - Publisher Copyright:
© the authors, publisher and licensee Libertas Academica Limited.
PY - 2015/4/27
Y1 - 2015/4/27
N2 - Aberrant behavior and function of neurons are believed to be the primary causes of most neurological diseases and psychiatric disorders. Human postmortem samples have limited availability and, while they provide clues to the state of the brain after a prolonged illness, they offer limited insight into the factors contributing to disease onset. Conversely, animal models cannot recapitulate the polygenic origins of neuropsychiatric disease. Novel methods, such as somatic cell reprogramming, deliver nearly limitless numbers of pathogenic human neurons for the study of the mechanism of neuropsy-chiatric disease initiation and progression. First, this article reviews the advent of human induced pluripotent stem cell (hiPSC) technology and introduces two major methods, “directed differentiation” and “neuronal induction,” by which it is now possible to generate neurons for modeling neuropsychiatric disease. Second, it discusses the recent applications, and the limitations, of these technologies to in vitro studies of psychiatric disorders.
AB - Aberrant behavior and function of neurons are believed to be the primary causes of most neurological diseases and psychiatric disorders. Human postmortem samples have limited availability and, while they provide clues to the state of the brain after a prolonged illness, they offer limited insight into the factors contributing to disease onset. Conversely, animal models cannot recapitulate the polygenic origins of neuropsychiatric disease. Novel methods, such as somatic cell reprogramming, deliver nearly limitless numbers of pathogenic human neurons for the study of the mechanism of neuropsy-chiatric disease initiation and progression. First, this article reviews the advent of human induced pluripotent stem cell (hiPSC) technology and introduces two major methods, “directed differentiation” and “neuronal induction,” by which it is now possible to generate neurons for modeling neuropsychiatric disease. Second, it discusses the recent applications, and the limitations, of these technologies to in vitro studies of psychiatric disorders.
KW - Directed differentiation
KW - Modeling neuropsychiatric disease
KW - Neuronal induction
KW - hiPSC
KW - iNeuron
UR - http://www.scopus.com/inward/record.url?scp=84930675782&partnerID=8YFLogxK
U2 - 10.4137/BMIMI.S20066
DO - 10.4137/BMIMI.S20066
M3 - Article
AN - SCOPUS:84930675782
SN - 1177-2719
VL - 10
SP - 31
EP - 41
JO - Biomarker Insights
JF - Biomarker Insights
ER -