TY - JOUR
T1 - From biomechanics to mechanobiology
T2 - Xenopus provides direct access to the physical principles that shape the embryo
AU - Chu, Chih Wen
AU - Masak, Geneva
AU - Yang, Jing
AU - Davidson, Lance A.
N1 - Publisher Copyright:
© 2020 Elsevier Ltd
PY - 2020/8
Y1 - 2020/8
N2 - Features of amphibian embryos that have served so well to elucidate the genetics of vertebrate development also enable detailed analysis of the physics that shape morphogenesis and regulate development. Biophysical tools are revealing how genes control mechanical properties of the embryo. The same tools that describe and control mechanical properties are being turned to reveal how dynamic mechanical information and feedback regulate biological programs of development. In this review we outline efforts to explore the various roles of mechanical cues in guiding cilia biology, axonal pathfinding, goblet cell regeneration, epithelial-to-mesenchymal transitions in neural crest, and mesenchymal-to-epithelial transitions in heart progenitors. These case studies reveal the power of Xenopus experimental embryology to expose pathways integrating mechanical cues with programs of development, organogenesis, and regeneration.
AB - Features of amphibian embryos that have served so well to elucidate the genetics of vertebrate development also enable detailed analysis of the physics that shape morphogenesis and regulate development. Biophysical tools are revealing how genes control mechanical properties of the embryo. The same tools that describe and control mechanical properties are being turned to reveal how dynamic mechanical information and feedback regulate biological programs of development. In this review we outline efforts to explore the various roles of mechanical cues in guiding cilia biology, axonal pathfinding, goblet cell regeneration, epithelial-to-mesenchymal transitions in neural crest, and mesenchymal-to-epithelial transitions in heart progenitors. These case studies reveal the power of Xenopus experimental embryology to expose pathways integrating mechanical cues with programs of development, organogenesis, and regeneration.
UR - http://www.scopus.com/inward/record.url?scp=85086500012&partnerID=8YFLogxK
U2 - 10.1016/j.gde.2020.05.011
DO - 10.1016/j.gde.2020.05.011
M3 - Review article
C2 - 32563783
AN - SCOPUS:85086500012
SN - 0959-437X
VL - 63
SP - 71
EP - 77
JO - Current Opinion in Genetics and Development
JF - Current Opinion in Genetics and Development
ER -