TY - JOUR
T1 - First-trimester urinary bisphenol a concentration in relation to anogenital distance, an androgen-sensitive measure of reproductive development, in infant girls
AU - Barrett, Emily S.
AU - Sathyanarayana, Sheela
AU - Mbowe, Omar
AU - Thurston, Sally W.
AU - Redmon, J. Bruce
AU - Nguyen, Ruby H.N.
AU - Swan, Shanna H.
N1 - Funding Information:
We thank the TIDES Study Team for their contributions. Coordinating Center: F. Liu, E. Scher, S. Evans; UCSF: M. Stasenko, E. Ayash, M. Schirmer, J. Farrell, M.-P. Thiet, L. Baskin; UMN: H. L. Gray, C. Georgesen, B. J. Rody, C. A. Terrell, K. Kaur; URMC: E. Brantley, H. Fiore, L. Kochman, J. Marino, W. Hulbert, R. Mevorach, E. Pressman; UW/SCH: R. Grady, K. Ivicek, B. Salveson, G. Alcedo; and the families who participated in the study. In addition, we thank A. Calafat (Centers for Disease Control and Prevention) for BPA analysis, the TIDES families for their participation, and the residents at URMC and UCSF who assisted in birth exams. Funding for TIDES was provided by the following grants from the National Institute of Environmental Health Sciences: R01ES016863-04 and R01ES016863-02S4. Support for the current analysis was provided by T32ES007271, P30ES001247, and P30ES005022.
Publisher Copyright:
© 2017, Public Health Services, US Dept of Health and Human Services. All rights reserved.
PY - 2017/7
Y1 - 2017/7
N2 - INTRODUCTION: Evidence from animal models suggests that prenatal exposure to bisphenol A (BPA), a ubiquitous endocrine-disrupting chemical, is associated with adverse reproductive outcomes in females. Exposure during early gestation, a critical period for reproductive development, is of particular concern. Anogenital distance (AGD) is a sensitive biomarker of the fetal hormonal milieu and a measure of reproductive toxicity in animal models. In some studies, the daughters of BPA-exposed dams have shorter AGD than controls. Here, we investigate this relationship in humans. METHODS: BPA was assayed in first-trimester urine samples from 385 participants who delivered infant girls in a multicenter pregnancy cohort study. After birth, daughters underwent exams that included two measures of AGD (AGD-AC: distance from center of anus to clitoris; AGD-AF: distance from center of anus to fourchette). We fit linear regression models to examine the association between specific gravity–adjusted (SPG-adj) maternal BPA concentrations and infant AGD, adjusting for covariates. RESULTS: BPA was detectable in 94% of women. In covariate-adjusted models fit on 381 eligible subjects, the natural logarithm of SpG-adj maternal BPA concentration was inversely associated with infant AGD-AC [β = − 0:56, 95% confidence interval (CI): −0:97, −0:15]. We observed no association between maternal BPA and infant AGD-AF. CONCLUSION: BPA may have toxic effects on the female reproductive system in humans, as it does in animal models. Higher first-trimester BPA exposure was associated with significantly shorter AGD in daughters, suggesting that BPA may alter the hormonal environment of the female fetus.
AB - INTRODUCTION: Evidence from animal models suggests that prenatal exposure to bisphenol A (BPA), a ubiquitous endocrine-disrupting chemical, is associated with adverse reproductive outcomes in females. Exposure during early gestation, a critical period for reproductive development, is of particular concern. Anogenital distance (AGD) is a sensitive biomarker of the fetal hormonal milieu and a measure of reproductive toxicity in animal models. In some studies, the daughters of BPA-exposed dams have shorter AGD than controls. Here, we investigate this relationship in humans. METHODS: BPA was assayed in first-trimester urine samples from 385 participants who delivered infant girls in a multicenter pregnancy cohort study. After birth, daughters underwent exams that included two measures of AGD (AGD-AC: distance from center of anus to clitoris; AGD-AF: distance from center of anus to fourchette). We fit linear regression models to examine the association between specific gravity–adjusted (SPG-adj) maternal BPA concentrations and infant AGD, adjusting for covariates. RESULTS: BPA was detectable in 94% of women. In covariate-adjusted models fit on 381 eligible subjects, the natural logarithm of SpG-adj maternal BPA concentration was inversely associated with infant AGD-AC [β = − 0:56, 95% confidence interval (CI): −0:97, −0:15]. We observed no association between maternal BPA and infant AGD-AF. CONCLUSION: BPA may have toxic effects on the female reproductive system in humans, as it does in animal models. Higher first-trimester BPA exposure was associated with significantly shorter AGD in daughters, suggesting that BPA may alter the hormonal environment of the female fetus.
UR - http://www.scopus.com/inward/record.url?scp=85032826396&partnerID=8YFLogxK
U2 - 10.1289/EHP875
DO - 10.1289/EHP875
M3 - Article
C2 - 28728138
AN - SCOPUS:85032826396
SN - 0091-6765
VL - 125
JO - Environmental Health Perspectives
JF - Environmental Health Perspectives
IS - 7
M1 - 077008
ER -