TY - JOUR
T1 - Fibronectin glycation increases IGF-I induced proliferation of human aortic smooth muscle cells
AU - Corrêa-Giannella, Maria Lúcia
AU - De Azevedo, Maria Regina Andrade
AU - Leroith, Derek
AU - Giannella-Neto, Daniel
N1 - Funding Information:
This study was supported by FAPESP (Process number 91/3617-8), São Paulo, Brazil. We are grateful to Dr. James K. McDougall (Fred Hutchinson Cancer Research Center. Seatle) for providing the human immortalized aortic SMC line.
PY - 2012
Y1 - 2012
N2 - The advanced glycation end products, namely AGEs, contribute to long-termed complications of diabetes mellitus, including macroangiopathy, where smooth muscle cells (SMC) proliferation stimulated by platelet-derived growth factor (PDGF) isoforms and insulin-like growth factor-I (IGF-I) plays an important role. The objective of the present study was to investigate the effect of an AGE-modified extracellular matrix protein on IGF-I induced SMC proliferation and on the IGF-I-IGF binding protein 4 (IGFBP-4) axis under basal conditions and after stimulation with PDGF-BB. IGF-I resulted in significantly higher thymidine incorporation in SMC seeded on AGE-modified fibronectin (AGE-FN) in comparison to cells seeded on fibronectin (FN). This augmented proliferation could not be accounted for by increased expression of IGF-IR, by decreased secretion of IGFBP-4, a binding protein that inhibits IGF-I mitogenic effects or by increased IGF-IR autophosphorylation. PDGF-BB did not modulate IGF-IR and IGFBP-4 mRNA expression in any of the substrata, however, this growth factor elicited opposite effects on the IGFBP-4 content in the conditioned media, increasing it in cells plated on FN and diminishing it in cells plated on AGE-FN. These findings suggest that one mechanism by which AGE-modified proteins is involved in the pathogenesis of diabetes-associated atherosclerosis might be by increasing SMC susceptibility to IGF-I mitogenic effects.
AB - The advanced glycation end products, namely AGEs, contribute to long-termed complications of diabetes mellitus, including macroangiopathy, where smooth muscle cells (SMC) proliferation stimulated by platelet-derived growth factor (PDGF) isoforms and insulin-like growth factor-I (IGF-I) plays an important role. The objective of the present study was to investigate the effect of an AGE-modified extracellular matrix protein on IGF-I induced SMC proliferation and on the IGF-I-IGF binding protein 4 (IGFBP-4) axis under basal conditions and after stimulation with PDGF-BB. IGF-I resulted in significantly higher thymidine incorporation in SMC seeded on AGE-modified fibronectin (AGE-FN) in comparison to cells seeded on fibronectin (FN). This augmented proliferation could not be accounted for by increased expression of IGF-IR, by decreased secretion of IGFBP-4, a binding protein that inhibits IGF-I mitogenic effects or by increased IGF-IR autophosphorylation. PDGF-BB did not modulate IGF-IR and IGFBP-4 mRNA expression in any of the substrata, however, this growth factor elicited opposite effects on the IGFBP-4 content in the conditioned media, increasing it in cells plated on FN and diminishing it in cells plated on AGE-FN. These findings suggest that one mechanism by which AGE-modified proteins is involved in the pathogenesis of diabetes-associated atherosclerosis might be by increasing SMC susceptibility to IGF-I mitogenic effects.
KW - Advanced glycation end products (AGE)
KW - Diabetes mellitus
KW - IGF-I
KW - IGFBP-4
KW - PDGF
KW - Smooth muscle cells
UR - http://www.scopus.com/inward/record.url?scp=84870551667&partnerID=8YFLogxK
U2 - 10.1186/1758-5996-4-19
DO - 10.1186/1758-5996-4-19
M3 - Article
AN - SCOPUS:84870551667
SN - 1758-5996
VL - 4
JO - Diabetology and Metabolic Syndrome
JF - Diabetology and Metabolic Syndrome
IS - 1
M1 - 19
ER -