TY - JOUR
T1 - FGF-FGFR signaling mediated through glycosaminoglycans in microtiter plate and cell-based microarray platforms
AU - Sterner, Eric
AU - Meli, Luciana
AU - Kwon, Seok Joon
AU - Dordick, Jonathan S.
AU - Linhardt, Robert J.
PY - 2013/12/17
Y1 - 2013/12/17
N2 - Fibroblast growth factor (FGF) signals cell growth through its interaction with a fibroblast growth factor receptor (FGFR) and a glycosaminoglycn (GAG) coreceptor. Here, we examine the signaling of five different FGFs (1, 2, 6, 8, and 8b) through FGFR3c. A small library of GAG and GAG-derivative coreceptors are screened to understand better the structure-activity relationship of these coreceptors on signaling. Initially, data were collected in a microtiter plate well-based cell proliferation assay. In an effort to reduce reagent requirements and improve assay throughput, a cell-based microarray platform was developed. In this cell-based microarray, FGFR3c-expressing cells were printed in alginate hydrogel droplets of ∼30 nL and incubated with FGF and GAG. Heparin was the most effective GAG coreceptor for all FGFs studied. Other GAGs, such as 2-O-desulfated heparin and chondroitin sulfate B, were also effective coreceptors. Signaling by FGF 8 and FGF 8b showed the widest tolerance for coreceptor structure. Finally, this on-chip cell-based microarray provides comparable data to a microtiter plate well-based assay, demonstrating that the coreceptor assay can be converted into a high-throughput assay.
AB - Fibroblast growth factor (FGF) signals cell growth through its interaction with a fibroblast growth factor receptor (FGFR) and a glycosaminoglycn (GAG) coreceptor. Here, we examine the signaling of five different FGFs (1, 2, 6, 8, and 8b) through FGFR3c. A small library of GAG and GAG-derivative coreceptors are screened to understand better the structure-activity relationship of these coreceptors on signaling. Initially, data were collected in a microtiter plate well-based cell proliferation assay. In an effort to reduce reagent requirements and improve assay throughput, a cell-based microarray platform was developed. In this cell-based microarray, FGFR3c-expressing cells were printed in alginate hydrogel droplets of ∼30 nL and incubated with FGF and GAG. Heparin was the most effective GAG coreceptor for all FGFs studied. Other GAGs, such as 2-O-desulfated heparin and chondroitin sulfate B, were also effective coreceptors. Signaling by FGF 8 and FGF 8b showed the widest tolerance for coreceptor structure. Finally, this on-chip cell-based microarray provides comparable data to a microtiter plate well-based assay, demonstrating that the coreceptor assay can be converted into a high-throughput assay.
UR - http://www.scopus.com/inward/record.url?scp=84890449786&partnerID=8YFLogxK
U2 - 10.1021/bi401284r
DO - 10.1021/bi401284r
M3 - Article
AN - SCOPUS:84890449786
SN - 0006-2960
VL - 52
SP - 9009
EP - 9019
JO - Biochemistry
JF - Biochemistry
IS - 50
ER -