Fetal and postnatal metal dysregulation in autism

Manish Arora, Abraham Reichenberg, Charlotte Willfors, Christine Austin, Chris Gennings, Steve Berggren, Paul Lichtenstein, Henrik Anckarsäter, Kristiina Tammimies, Sven Bölte

Research output: Contribution to journalArticlepeer-review

116 Scopus citations

Abstract

Genetic and environmental factors contribute to the etiologies of autism spectrum disorder (ASD), but evidence of specific environmental exposures and susceptibility windows is limited. Here we study monozygotic and dizygotic twins discordant for ASD to test whether fetal and postnatal metal dysregulation increases ASD risk. Using validated tooth-matrix biomarkers, we estimate pre- and post-natal exposure profiles of essential and toxic elements. Significant divergences are apparent in metal uptake between ASD cases and their control siblings, but only during discrete developmental periods. Cases have reduced uptake of essential elements manganese and zinc, and higher uptake of the neurotoxin lead. Manganese and lead are also correlated with ASD severity and autistic traits. Our study suggests that metal toxicant uptake and essential element deficiency during specific developmental windows increases ASD risk and severity, supporting the hypothesis of systemic elemental dysregulation in ASD. Independent replication in population-based studies is needed to extend these findings.

Original languageEnglish
Article number15493
JournalNature Communications
Volume8
DOIs
StatePublished - 1 Jun 2017

Fingerprint

Dive into the research topics of 'Fetal and postnatal metal dysregulation in autism'. Together they form a unique fingerprint.

Cite this