Feasibility of assessing bone matrix and mineral properties in vivo by combined solidstate 1H and 31P MRI

Xia Zhao, Hee Kwon Song, Alan C. Seifert, Cheng Li, Felix W. Wehrli

Research output: Contribution to journalArticlepeer-review

38 Scopus citations

Abstract

Purpose To develop and evaluate an integrated imaging protocol for bone water and phosphorus quantification in vivo by solid-state 1H and 31P MRI. Materials and methods All studies were HIPAA-compliant and were performed with institutional review board approval and written informed consent. Proton (1H) ultra-short echo-time (UTE) and phosphorus (31P) zero echo-time (ZTE) sequences were designed and implemented on a 3 T clinical MR scanner to quantify bone water and mineral in vivo. The left tibia of ten healthy subjects (including both genders, 49±15 y/o) was examined with a custom-built 1H/31P dualfrequency extremity RF coil. Total bone water (TW), water bound to the collagen matrix (BW) and bone 31P were quantified from MR images with respect to reference samples of known 1H or 31P concentration, and pore water (PW) was subsequently determined from TW and BW. Porosity index (PI) was calculated as the ratio between UTE images acquired at two echo times. MRI parameters were compared with bone density measures obtained by high-resolution peripheral quantitative CT (HR-pQCT). Results The total scan time for the bone water and 31P quantification protocol was about 50 minutes. Average TW, BW, PW and 31P concentrations were 13.99±1.26, 10.39±0.80, 3.34±1.41 mol/L and 7.06±1.53 mol/L for the studied cohort, respectively, in good agreement with previous results conducted ex vivo. Average intra-subject coefficients of variation were 3.47%, 2.60% and 7.50% for TW, BW and PW and 5.60% for 31P. Negative correlations were observed between PW and vBMD (p<0.05) as well as between PI and 31P (p<0.05), while bone mineral content (BMC) estimated from 31P MRI and HR-pQCT were strongly positively correlated (p<0.0001). Conclusion This work demonstrates the feasibility of quantifying bone water and mineral phosphorus in human subjects in a single MRI session with a clinically practical imaging protocol.

Original languageEnglish
Article numbere0173995
JournalPLoS ONE
Volume12
Issue number3
DOIs
StatePublished - Mar 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'Feasibility of assessing bone matrix and mineral properties in vivo by combined solidstate 1H and 31P MRI'. Together they form a unique fingerprint.

Cite this