TY - JOUR
T1 - Extensivity and additivity of the Kolmogorov-Sinai entropy for simple fluids
AU - Das, Moupriya
AU - Costa, Anthony B.
AU - Green, Jason R.
N1 - Publisher Copyright:
© 2017 American Physical Society.
PY - 2017/2/3
Y1 - 2017/2/3
N2 - According to the van der Waals picture, attractive and repulsive forces play distinct roles in the structure of simple fluids. Here, we examine their roles in dynamics; specifically, in the degree of deterministic chaos using the Kolmogorov-Sinai (KS) entropy rate and the spectra of Lyapunov exponents. With computer simulations of three-dimensional Lennard-Jones and Weeks-Chandler-Andersen fluids, we find repulsive forces dictate these dynamical properties, with attractive forces reducing the KS entropy at a given thermodynamic state. Regardless of interparticle forces, the maximal Lyapunov exponent is intensive for systems ranging from 200 to 2000 particles. Our finite-size scaling analysis also shows that the KS entropy is both extensive (a linear function of system-size) and additive. Both temperature and density control the "dynamical chemical potential," the rate of linear growth of the KS entropy with system size. At fixed system-size, both the KS entropy and the largest exponent exhibit a maximum as a function of density. We attribute the maxima to the competition between two effects: as particles are forced to be in closer proximity, there is an enhancement from the sharp curvature of the repulsive potential and a suppression from the diminishing free volume and particle mobility. The extensivity and additivity of the KS entropy and the intensivity of the largest Lyapunov exponent, however, hold over a range of temperatures and densities across the liquid and liquid-vapor coexistence regimes.
AB - According to the van der Waals picture, attractive and repulsive forces play distinct roles in the structure of simple fluids. Here, we examine their roles in dynamics; specifically, in the degree of deterministic chaos using the Kolmogorov-Sinai (KS) entropy rate and the spectra of Lyapunov exponents. With computer simulations of three-dimensional Lennard-Jones and Weeks-Chandler-Andersen fluids, we find repulsive forces dictate these dynamical properties, with attractive forces reducing the KS entropy at a given thermodynamic state. Regardless of interparticle forces, the maximal Lyapunov exponent is intensive for systems ranging from 200 to 2000 particles. Our finite-size scaling analysis also shows that the KS entropy is both extensive (a linear function of system-size) and additive. Both temperature and density control the "dynamical chemical potential," the rate of linear growth of the KS entropy with system size. At fixed system-size, both the KS entropy and the largest exponent exhibit a maximum as a function of density. We attribute the maxima to the competition between two effects: as particles are forced to be in closer proximity, there is an enhancement from the sharp curvature of the repulsive potential and a suppression from the diminishing free volume and particle mobility. The extensivity and additivity of the KS entropy and the intensivity of the largest Lyapunov exponent, however, hold over a range of temperatures and densities across the liquid and liquid-vapor coexistence regimes.
UR - http://www.scopus.com/inward/record.url?scp=85013811712&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.95.022102
DO - 10.1103/PhysRevE.95.022102
M3 - Article
C2 - 28297958
AN - SCOPUS:85013811712
SN - 2470-0045
VL - 95
JO - Physical Review E
JF - Physical Review E
IS - 2
M1 - 022102
ER -