Abstract
Motivation: Genome-wide mRNA profiling provides a snapshot of the global state of cells under different conditions. However, mRNA levels do not provide direct understanding of upstream regulatory mechanisms. Here, we present a new approach called Expression2Kinases (X2K) to identify upstream regulators likely responsible for observed patterns in genome-wide gene expression. By integrating chromatin immuno-precipitation (ChIP)-seq/chip and position weight matrices (PWMs) data, protein-protein interactions and kinase-substrate phosphorylation reactions, we can better identify regulatory mechanisms upstream of genome-wide differences in gene expression. We validated X2K by applying it to recover drug targets of food and drug administration (FDA)-approved drugs from drug perturbations followed by mRNA expression profiling; to map the regulatory landscape of 44 stem cells and their differentiating progeny; to profile upstream regulatory mechanisms of 327 breast cancer tumors; and to detect pathways from profiled hepatic stellate cells and hippocampal neurons. The X2K approach can advance our understanding of cell signaling and unravel drugs mechanisms of action.
Original language | English |
---|---|
Article number | btr625 |
Pages (from-to) | 105-111 |
Number of pages | 7 |
Journal | Bioinformatics |
Volume | 28 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2012 |