TY - JOUR
T1 - Expression of complement components and inhibitors on platelet microparticles
AU - Yin, Wei
AU - Ghebrehiwet, Berhane
AU - Peerschke, Ellinor I.B.
N1 - Funding Information:
This work was supported in part by grants HL67211 (EIBP) and AI060866 (BG) from the National Institutes of Health, and an American Heart Association Heritage Affiliate postdoctoral award # 0625900T (WY).
PY - 2008/5
Y1 - 2008/5
N2 - Platelet microparticles (PMP) are released from activated platelets and play an important role in hemostasis, thrombosis and inflammation. Since platelets were recently found to demonstrate an intrinsic capacity for activating both classical and alternative pathways of the complement system, the present study extended these observations to PMP. PMP were generated by treating platelets with 10 μM A23187 (37°C, 5 min). PMP were identified by flow cytometry, based on size, Annexin V binding, and expression of P-selectin and GPIIb (CD41). PMP expressed gC1qR/p33, a multifunctional cellular protein that was recently described to activate the classical complement cascade. PMP also expressed the classical pathway and contact system regulator, C1 inhibitor (C1-INH), as well as CD55 and CD59. Despite C1-INH expression, PMP supported classical pathway C4 activation in the presence of purified C1 and C4. Moreover, statistically significant deposition of C3b and C5b-9 was detected on PMP exposed to plasma, concurrently with expression of CD55 and CD59. These data provide the first evidence for the ability of PMP to support in situ complement activation. Complement activation contributes to a variety of vascular and inflammatory disease states including atherosclerosis and ischemia/reperfusion injury.
AB - Platelet microparticles (PMP) are released from activated platelets and play an important role in hemostasis, thrombosis and inflammation. Since platelets were recently found to demonstrate an intrinsic capacity for activating both classical and alternative pathways of the complement system, the present study extended these observations to PMP. PMP were generated by treating platelets with 10 μM A23187 (37°C, 5 min). PMP were identified by flow cytometry, based on size, Annexin V binding, and expression of P-selectin and GPIIb (CD41). PMP expressed gC1qR/p33, a multifunctional cellular protein that was recently described to activate the classical complement cascade. PMP also expressed the classical pathway and contact system regulator, C1 inhibitor (C1-INH), as well as CD55 and CD59. Despite C1-INH expression, PMP supported classical pathway C4 activation in the presence of purified C1 and C4. Moreover, statistically significant deposition of C3b and C5b-9 was detected on PMP exposed to plasma, concurrently with expression of CD55 and CD59. These data provide the first evidence for the ability of PMP to support in situ complement activation. Complement activation contributes to a variety of vascular and inflammatory disease states including atherosclerosis and ischemia/reperfusion injury.
KW - Complement
KW - Microparticles
KW - Platelets
UR - https://www.scopus.com/pages/publications/42449134521
U2 - 10.1080/09537100701777311
DO - 10.1080/09537100701777311
M3 - Article
C2 - 18432523
AN - SCOPUS:42449134521
SN - 0953-7104
VL - 19
SP - 225
EP - 233
JO - Platelets
JF - Platelets
IS - 3
ER -