Abstract
Identifying the key drivers of common human diseases and associated signaling pathways remains one of the primary objectives in the biomedical and life sciences. In this respect, common inbred strains of mice have played a crucial role, and recent advances in the development of genomics and bioinformatics tools have significantly enhanced their utility for this purpose. These advances have enabled a more holistic, network-oriented view of biological systems that facilitates elucidation of the underlying causes of disease and the best ways to target them. Success in reconstructing gene networks underlying disease traits (or other complex traits like drug response) and identifying the key drivers of these traits now largely rests on integrative approaches that combine data from multiple different sources. Such integrative genomics approaches that take into account genotypic, molecular profiling and clinical data in segregating mouse populations have recently been developed. Key to this integration has been the development and application of sophisticated algorithms to mine the diversity of data.
Original language | English |
---|---|
Pages (from-to) | 647-654 |
Number of pages | 8 |
Journal | Current Opinion in Biotechnology |
Volume | 16 |
Issue number | 6 |
DOIs | |
State | Published - Dec 2005 |
Externally published | Yes |