TY - JOUR
T1 - Experimental autoimmune encephalomyelitis-resistant mice have highly encephalitogenic myelin basic protein (MBP)-specific T cell clones that recognize a MBP peptide with high affinity for MHC class II
AU - Abromson-Leeman, Sara
AU - Alexander, Jeff
AU - Bronson, Roderick
AU - Carroll, John
AU - Southwood, Scott
AU - Dorf, Martin
PY - 1995/1/1
Y1 - 1995/1/1
N2 - BALB/c mice are resistant to disease induction when experimental protocols that induce experimental autoimmune encephalomyelitis (EAE) in susceptible strains of animals are used. We have previously described a panel of myelin basic protein (MBP)-specific CD4+ T cell clones from BALB/c mice, two of which induce moderate EAE when transferred to syngeneic recipients. These clones are I-E(d) restricted and recognize residues 151-160 of mouse MBP. Here, we describe a series of 17 MBP-reactive T cell clones, which were derived from two BALB/c mice. All are I-A(d) restricted and recognize nested epitopes in peptide 59-76 of mouse MBP. Four different TCR Vβ chains are used by this panel of clones; these include Vβ8.2 (10/17), Vβ8.1 (2/17), Vβ7 (3/17), and Vβ14 (2/17). Twelve of fourteen clones tested adoptively transferred severe demyelinating EAE to syngeneic recipients. Studies of relative binding affinities of MBP peptides to class II molecules I-A(d) and I-E(d) show that peptide 59-76 binds with extremely high affinity to I-A(d), whereas three peptides that contain residues 151-160 bind poorly to I-E(d). These results are consistent with a growing number of reports that show that high affinity binding to class II is required for autoantigenic stimulation. Despite encephalitogenicity of 59-76-reactive T cells, active immunization of BALB/c mice with peptide 59-76 in adjuvant failed to induce either clinical or histologic signs of EAE. The implications of these findings for mechanisms of genetically determined EAE resistance are discussed.
AB - BALB/c mice are resistant to disease induction when experimental protocols that induce experimental autoimmune encephalomyelitis (EAE) in susceptible strains of animals are used. We have previously described a panel of myelin basic protein (MBP)-specific CD4+ T cell clones from BALB/c mice, two of which induce moderate EAE when transferred to syngeneic recipients. These clones are I-E(d) restricted and recognize residues 151-160 of mouse MBP. Here, we describe a series of 17 MBP-reactive T cell clones, which were derived from two BALB/c mice. All are I-A(d) restricted and recognize nested epitopes in peptide 59-76 of mouse MBP. Four different TCR Vβ chains are used by this panel of clones; these include Vβ8.2 (10/17), Vβ8.1 (2/17), Vβ7 (3/17), and Vβ14 (2/17). Twelve of fourteen clones tested adoptively transferred severe demyelinating EAE to syngeneic recipients. Studies of relative binding affinities of MBP peptides to class II molecules I-A(d) and I-E(d) show that peptide 59-76 binds with extremely high affinity to I-A(d), whereas three peptides that contain residues 151-160 bind poorly to I-E(d). These results are consistent with a growing number of reports that show that high affinity binding to class II is required for autoantigenic stimulation. Despite encephalitogenicity of 59-76-reactive T cells, active immunization of BALB/c mice with peptide 59-76 in adjuvant failed to induce either clinical or histologic signs of EAE. The implications of these findings for mechanisms of genetically determined EAE resistance are discussed.
UR - http://www.scopus.com/inward/record.url?scp=0028804389&partnerID=8YFLogxK
M3 - Article
C2 - 7527816
AN - SCOPUS:0028804389
SN - 0022-1767
VL - 154
SP - 388
EP - 398
JO - Journal of Immunology
JF - Journal of Immunology
IS - 1
ER -