TY - JOUR
T1 - Evaluation of Venous Stenosis Angioplasty in a Murine Arteriovenous Fistula Model
AU - Cai, Chuanqi
AU - Yang, Binxia
AU - Kilari, Sreenivasulu
AU - Li, Yiqing
AU - Zhao, Chenglei
AU - Sharma, Amit
AU - Misra, Sanjay
N1 - Publisher Copyright:
© 2018 SIR
PY - 2019/9
Y1 - 2019/9
N2 - Purpose: To develop a clinically relevant model of percutaneous transluminal angioplasty (PTA) of venous stenosis in mice with arteriovenous fistula (AVF); to test the hypothesis that there is increased wall shear stress (WSS) after PTA; and to histologically characterize the vessels. Materials and Methods: Thirteen C57BL/6J male mice, 6–8 weeks old, underwent partial nephrectomy to create chronic kidney disease. Twenty-eight days later, an AVF was created from the right external jugular vein to the left carotid artery. Fourteen days later, an angioplasty or sham procedure was performed, and the mice were sacrificed 14 days later for histologic evaluation to identify the cells contributing to the vascular remodeling (α-SMA, FSP-1, CD31, and CD68), proliferation (Ki-67), cell death (TUNEL), and hypoxia staining (HIF-1α). Histomorphometric analysis was performed to assess lumen area, neointima+media area, and cellular density. Ultrasound was performed weekly after creation of the AVF. Results: Venous stenosis occurred 14 days after the creation of an AVF. PTA-treated vessels had significantly higher WSS; average peak systolic velocity, with increased lumen vessel area; and decreased neointima + media area compared to sham controls. There was a significant decrease in the staining of smooth muscle cells, fibroblasts, macrophages, HIF-1α, proliferation, and apoptosis and an increase in CD31-(+) cells. Conclusions: A clinically relevant model of PTA of venous stenosis in mice was created. PTA-treated vessels had increased lumen vessel area and WSS. The alterations in tissue markers of vascular remodeling, tissue hypoxia, proliferation, and cell death may be implications for future design of drug and device development.
AB - Purpose: To develop a clinically relevant model of percutaneous transluminal angioplasty (PTA) of venous stenosis in mice with arteriovenous fistula (AVF); to test the hypothesis that there is increased wall shear stress (WSS) after PTA; and to histologically characterize the vessels. Materials and Methods: Thirteen C57BL/6J male mice, 6–8 weeks old, underwent partial nephrectomy to create chronic kidney disease. Twenty-eight days later, an AVF was created from the right external jugular vein to the left carotid artery. Fourteen days later, an angioplasty or sham procedure was performed, and the mice were sacrificed 14 days later for histologic evaluation to identify the cells contributing to the vascular remodeling (α-SMA, FSP-1, CD31, and CD68), proliferation (Ki-67), cell death (TUNEL), and hypoxia staining (HIF-1α). Histomorphometric analysis was performed to assess lumen area, neointima+media area, and cellular density. Ultrasound was performed weekly after creation of the AVF. Results: Venous stenosis occurred 14 days after the creation of an AVF. PTA-treated vessels had significantly higher WSS; average peak systolic velocity, with increased lumen vessel area; and decreased neointima + media area compared to sham controls. There was a significant decrease in the staining of smooth muscle cells, fibroblasts, macrophages, HIF-1α, proliferation, and apoptosis and an increase in CD31-(+) cells. Conclusions: A clinically relevant model of PTA of venous stenosis in mice was created. PTA-treated vessels had increased lumen vessel area and WSS. The alterations in tissue markers of vascular remodeling, tissue hypoxia, proliferation, and cell death may be implications for future design of drug and device development.
UR - http://www.scopus.com/inward/record.url?scp=85062960205&partnerID=8YFLogxK
U2 - 10.1016/j.jvir.2018.11.032
DO - 10.1016/j.jvir.2018.11.032
M3 - Article
C2 - 30902494
AN - SCOPUS:85062960205
SN - 1051-0443
VL - 30
SP - 1512-1521.e3
JO - Journal of Vascular and Interventional Radiology
JF - Journal of Vascular and Interventional Radiology
IS - 9
ER -