Evaluation of differences across age groups in the incidence, severity, and recovery of concussion in adolescent student-athletes from 2009 to 2019

Theodore C. Hannah, Roshini Kalagara, Muhammad Ali, Alexander J. Schupper, Adam Y. Li, Zachary Spiera, Naoum Fares Marayati, Addison Quinones, Zerubabbel K. Asfaw, Vikram Vasan, Eugene I. Hrabarchuk, Lily McCarthy, Alex Gometz, Mark Lovell, Tanvir Choudhri

Research output: Contribution to journalArticlepeer-review


OBJECTIVE Concussion incidence is known to be highest in children and adolescents; however, there is conflicting evidence about the effect of age on concussion risk and recovery within the adolescent age range. The heterogeneity of results may be partially due to the use of age groupings based on convenience, making comparisons across studies difficult. This study evaluated the independent effect of age on concussion incidence, severity, and recovery in student-athletes aged 12–18 years using cluster analysis to define groupings. METHODS Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) scores of 11,403 baseline tests and 4922 postinjury tests were used to calculate the incidence rates for adolescent student-athletes grouped into 3 age bands (12–13, 14–15, and 16–18 years of age) on the basis of clustering analysis. The recently created Severity Index was used to compare concussion severity between groups. Follow-up tests for subjects who sustained a concussion were used to evaluate recovery time. The chi-square test and 1-way ANOVA were used to compare differences in demographic characteristics and concussion incidence, severity, and recovery. Multivariable logistic and linear regressions were used to evaluate the independent effects of age on concussion incidence and severity, respectively. Multivariable Cox hazard regression was used to evaluate differences in recovery time. Further analyses were conducted to directly compare findings across studies on the basis of the age groupings used in prior studies. RESULTS Multivariable regression analyses demonstrated that the 14- to 15-year-old age group had a significantly higher concussion incidence than both the 12- to 13-year-old (14- to 15-year-old group vs 12- to 13-year-old group, OR 1.57, 95% CI 1.16–2.17, p = 0.005) and 16- to 18-year-old (16- to 18-year-old group vs 14- to 15-year-old group, OR 0.79, 95% CI 0.69–0.91, p = 0.0008) age groups. There was no difference in incidence between the 12- to 13-year-old and 16-to 18-year-old groups (16- to 18-year group vs 12- to 13-year group, OR 1.26, 95% CI 0.93–1.72, p = 0.15). There were also no differences in concussion severity or recovery between any groups. CONCLUSIONS This study found that concussion incidence was higher during mid-adolescence than early and late adolescence, suggesting a U-shaped relationship between age and concussion risk over the course of adolescence. Age had no independent effect on concussion severity or recovery in the 12- to 13-, 14- to 15-, and 16- to 18-year-old groups. Further analysis of the various age groups revealed that results may vary significantly with minor changes to groupings, which may explain the divergent results in the current literature on this topic. Thus, caution should be taken when interpreting the results of this and all similar studies, especially when groupings are based on convenience.

Original languageEnglish
Pages (from-to)369-377
Number of pages9
JournalJournal of Neurosurgery: Pediatrics
Issue number4
StatePublished - Oct 2022


  • ImPACT
  • Severity Index
  • adolescents
  • age
  • concussion
  • student-athletes
  • trauma
  • traumatic brain injury


Dive into the research topics of 'Evaluation of differences across age groups in the incidence, severity, and recovery of concussion in adolescent student-athletes from 2009 to 2019'. Together they form a unique fingerprint.

Cite this