ERBB2 increases metastatic potentials specifically in androgen-insensitive prostate cancer cells

Jessica Tome-Garcia, Dan Li, Seda Ghazaryan, Limin Shu, Lizhao Wu

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Despite all the blood-based biomarkers used to monitor prostate cancer patients, prostate cancer remains as the second common cause of cancer mortality in men in the United States. This is largely due to a lack of understanding of the molecular pathways that are responsible for the aggressive forms of prostate cancers, the castrate-resistant prostate cancer and the metastatic prostate cancer. Cell signaling pathways activated by the ERBB2 oncogene or the RAS oncogene are frequently found to be altered in metastatic prostate cancers. To evaluate and define the role of the ERBB2/RAS pathway in prostate cancer metastasis, we have evaluated the impact of ERBB2 - or RAS-overexpression on the metastatic potentials for four prostate cancer cell lines derived from tumors with different androgen sensitivities. To do so, we transfected the human DU145, LnCaP, and PC3 prostate cancer cells and the murine Myc-CaP prostate cancer cells with the activated form of ERBB2 or H-RAS and assessed their metastatic potentials by three complementary assays, a wound healing assay, a transwell motility assay, and a transwell invasion assay. We showed that while overexpression of ERBB2 increased the metastatic potential of the androgen-insensitive prostate cancer cells (i.e. PC3 and DU145), it did not affect metastatic potentials of the androgen-sensitive prostate cancer cells (i.e. LnCaP and Myc-CaP). In contrast, overexpression of H-RAS only increased the cell motility of Myc-CaP cells, which overexpress the human c-MYC oncogene. Our data suggest that ERBB2 collaborates with androgen signaling to promote prostate cancer metastasis, and that although RAS is one of the critical downstream effectors of ERBB2, it does not phenocopy ERBB2 for its impact on the metastatic potentials of prostate cancer cell lines.

Original languageEnglish
Article numbere99525
JournalPLoS ONE
Volume9
Issue number6
DOIs
StatePublished - 17 Jun 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'ERBB2 increases metastatic potentials specifically in androgen-insensitive prostate cancer cells'. Together they form a unique fingerprint.

Cite this