Enhanced striatal dopamine release during food stimulation in binge eating disorder

Gene Jack Wang, Allan Geliebter, Nora D. Volkow, Frank W. Telang, Jean Logan, Millard C. Jayne, Kochavi Galanti, Peter A. Selig, Hao Han, Wei Zhu, Christopher T. Wong, Joanna S. Fowler

Research output: Contribution to journalArticlepeer-review

253 Scopus citations

Abstract

Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with 11 Craclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.

Original languageEnglish
Pages (from-to)1601-1608
Number of pages8
JournalObesity
Volume19
Issue number8
DOIs
StatePublished - Aug 2011

Fingerprint

Dive into the research topics of 'Enhanced striatal dopamine release during food stimulation in binge eating disorder'. Together they form a unique fingerprint.

Cite this